This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287846 #31 Mar 04 2024 15:00:33 %S A287846 1,1,0,2,0,4,6,8,24,52,96,212,504,1072,2352,5288,11928,26800,60336, %T A287846 136304,308928,701248,1593120,3622016,8245008,18787360,42836928, %U A287846 97724384,223052784,509338816,1163512032,2658731648,6077117376,13893874624,31771515648 %N A287846 Number of Dyck paths of semilength n such that each positive level up to the highest nonempty level has exactly one peak. %C A287846 All terms with n > 1 are even. %H A287846 Alois P. Heinz, <a href="/A287846/b287846.txt">Table of n, a(n) for n = 0..1000</a> %H A287846 Manosij Ghosh Dastidar and Michael Wallner, <a href="https://arxiv.org/abs/2402.17849">Bijections and congruences involving lattice paths and integer compositions</a>, arXiv:2402.17849 [math.CO], 2024. See p. 15. %H A287846 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %e A287846 . a(1) = 1: /\ . %e A287846 . %e A287846 . a(3) = 2: /\ /\ %e A287846 . /\/ \ / \/\ . %e A287846 . %e A287846 . a(5) = 4: %e A287846 . /\ /\ /\ /\ %e A287846 . /\/ \ / \/\ /\/ \ / \/\ %e A287846 . /\/ \ /\/ \ / \/\ / \/\ . %p A287846 b:= proc(n, j) option remember; `if`(n=j or n=0, 1, add( %p A287846 b(n-j, i)*binomial(j-1, i-2)*i, i=1..min(j+2, n-j))) %p A287846 end: %p A287846 a:= n-> b(n, 1): %p A287846 seq(a(n), n=0..35); %t A287846 b[n_, j_] := b[n, j] = If[n == j || n == 0, 1, Sum[b[n - j, i]*Binomial[j - 1, i - 2]*i, {i, 1, Min[j + 2, n - j]}]]; %t A287846 a[n_] := b[n, 1]; %t A287846 Table[a[n], {n, 0, 35}] (* _Jean-François Alcover_, May 23 2018, translated from Maple *) %Y A287846 Column k=1 of A288318. %Y A287846 Cf. A000108, A281874, A287843, A287845, A287901, A287963, A287987, A289020. %K A287846 nonn %O A287846 0,4 %A A287846 _Alois P. Heinz_, Jun 01 2017