This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287847 #31 Mar 21 2021 13:06:50 %S A287847 1,1,0,1,1,0,1,1,1,0,1,1,2,3,0,1,1,2,4,5,0,1,1,2,5,12,13,0,1,1,2,5,13, %T A287847 31,31,0,1,1,2,5,14,40,90,71,0,1,1,2,5,14,41,119,264,181,0,1,1,2,5,14, %U A287847 42,130,376,797,447,0,1,1,2,5,14,42,131,414,1202,2402,1111,0 %N A287847 Number A(n,k) of Dyck paths of semilength n such that no level has more than k peaks; square array A(n,k), n >= 0, k >= 0, read by descending antidiagonals. %H A287847 Alois P. Heinz, <a href="/A287847/b287847.txt">Antidiagonals n = 0..140, flattened</a> %H A287847 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %F A287847 A(n,k) = Sum_{j=0..k} A287822(n,j). %e A287847 . A(3,1) = 3: /\ %e A287847 . /\ /\ / \ %e A287847 . /\/ \ / \/\ / \ . %e A287847 . %e A287847 . A(3,2) = 4: /\ %e A287847 . /\ /\ /\/\ / \ %e A287847 . /\/ \ / \/\ / \ / \ . %e A287847 . %e A287847 . A(3,3) = 5: /\ %e A287847 . /\ /\ /\/\ / \ %e A287847 . /\/\/\ /\/ \ / \/\ / \ / \ . %e A287847 . %e A287847 Square array A(n,k) begins: %e A287847 1, 1, 1, 1, 1, 1, 1, 1, ... %e A287847 0, 1, 1, 1, 1, 1, 1, 1, ... %e A287847 0, 1, 2, 2, 2, 2, 2, 2, ... %e A287847 0, 3, 4, 5, 5, 5, 5, 5, ... %e A287847 0, 5, 12, 13, 14, 14, 14, 14, ... %e A287847 0, 13, 31, 40, 41, 42, 42, 42, ... %e A287847 0, 31, 90, 119, 130, 131, 132, 132, ... %e A287847 0, 71, 264, 376, 414, 427, 428, 429, ... %p A287847 b:= proc(n, k, j) option remember; `if`(j=n, 1, add( %p A287847 b(n-j, k, i)*add(binomial(i, m)*binomial(j-1, i-1-m), %p A287847 m=max(0, i-j)..min(k, i-1)), i=1..min(j+k, n-j))) %p A287847 end: %p A287847 A:= proc(n, k) option remember; `if`(n=0, 1, (m-> %p A287847 add(b(n, m, j), j=1..m))(min(n, k))) %p A287847 end: %p A287847 seq(seq(A(n, d-n), n=0..d), d=0..14); %t A287847 b[n_, k_, j_] := b[n, k, j] = If[j == n, 1, Sum[b[n - j, k, i]*Sum[ Binomial[i, m]*Binomial[j - 1, i - 1 - m], {m, Max[0, i - j], Min[k, i - 1]}], {i, 1, Min[j + k, n - j]}]]; %t A287847 A[n_, k_] := A[n, k] = If[n==0, 1, Sum[b[n, #, j], {j, 1, #}]&[Min[n, k]]]; %t A287847 Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, May 25 2018, translated from Maple *) %o A287847 (Python) %o A287847 from sympy.core.cache import cacheit %o A287847 from sympy import binomial %o A287847 @cacheit %o A287847 def b(n, k, j): return 1 if j==n else sum([b(n - j, k, i)*sum([binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(0, i - j), min(k, i - 1) + 1)]) for i in range(1, min(j + k, n - j) + 1)]) %o A287847 @cacheit %o A287847 def A(n, k): %o A287847 if n==0: return 1 %o A287847 m=min(n, k) %o A287847 return sum([b(n, m , j) for j in range(1, m + 1)]) %o A287847 for d in range(21): print([A(n, d - n) for n in range(d + 1)]) # _Indranil Ghosh_, Aug 16 2017 %Y A287847 Columns k=0-10 give: A000007, A281874, A287966, A287967, A287968, A287969, A287970, A287971, A287972, A287973, A287974. %Y A287847 Main diagonal and first two lower diagonals give: A000108, A001453, A120304. %Y A287847 Cf. A287822. %K A287847 nonn,tabl %O A287847 0,13 %A A287847 _Alois P. Heinz_, Jun 01 2017