This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287864 #48 Mar 29 2024 03:39:20 %S A287864 1,1,1,2,2,3,3,4,4,5,5,6,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,13, %T A287864 14,14,15,15,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22,23,23 %N A287864 Consider a symmetric pyramid-shaped chessboard with rows of squares of lengths n, n-2, n-4, ..., ending with either 2 or 1 squares; a(n) is the maximal number of mutually non-attacking queens that can be placed on this board. %C A287864 Since there can be at most one queen per row, for n >= 2, a(n) <= floor(n/2). It would be nice to know how fast this sequence grows. Compare A287867. %C A287864 If n=2t, the board contains t(t+1) squares; if n=2t+1 it contains (t+1)^2 squares. The number of squares is thus given by the quarter-squares sequence (A002620(n+1)). %C A287864 The bisection a(2n+1) is A274933. - _Rob Pratt_, Jun 04 2017 %C A287864 For n = 1 to 100, here are the exceptions to the pattern that the values increase by 1 every two steps: %C A287864 a(1) = a(2) = a(3) = 1 %C A287864 a(12) = a(13) = a(14) = 6 %C A287864 a(27) = a(28) = a(29) = 13 %C A287864 a(44) = a(45) = a(46) = 21 %C A287864 a(59) = a(60) = a(61) = 28 %C A287864 a(74) = a(75) = a(76) = 35 %C A287864 a(89) = a(90) = a(91) = 42. - _Rob Pratt_, Jun 04 2017 %H A287864 Andy Huchala, <a href="/A287864/b287864.txt">Table of n, a(n) for n = 1..212</a> (terms 1..100 from Rob Pratt). %H A287864 Andy Huchala, <a href="/A287864/a287864.py.txt">Python program</a>. %e A287864 Q = queen, X = empty square %e A287864 --- %e A287864 Q a(1)=1 %e A287864 --- %e A287864 QX a(2)=1 %e A287864 --- %e A287864 .X. %e A287864 QXX a(3)=1 %e A287864 --- %e A287864 .QX. %e A287864 XXXQ a(4)=2 %e A287864 ---- %e A287864 ..X.. %e A287864 .QXX. %e A287864 XXXQX a(5)=2 %e A287864 ----- %e A287864 ..QX.. %e A287864 .XXXQ. %e A287864 XQXXXX a(6)=3 %e A287864 ------ %e A287864 ...X... %e A287864 ..QXX.. %e A287864 .XXXQX. %e A287864 XQXXXXX a(7)=3 %e A287864 ------- %e A287864 ...QX... %e A287864 ..XXXQ.. %e A287864 .XQXXXX. %e A287864 XXXXQXXX a(8)=4 %e A287864 -------- %e A287864 ....QX.... %e A287864 ...XXXQ... %e A287864 ..XQXXXX.. %e A287864 .XXXXQXXX. %e A287864 XXQXXXXXXX a(10)=5 %e A287864 ---------- %e A287864 .....QX..... %e A287864 ....XXXQ.... %e A287864 ...XQXXXX... %e A287864 ..XXXXQXXX.. %e A287864 .XXQXXXXXXX. %e A287864 XXXXXXXXXQXX a(12)=6 %e A287864 ------------ %e A287864 ......QX...... %e A287864 .....XXXQ..... %e A287864 ....XQXXXX.... %e A287864 ...XXXXQXXX... %e A287864 ..XXQXXXXXXX.. %e A287864 .XXXXXXXXXQXX. %e A287864 XXXXXXXXXXXXXX a(14)=6 %e A287864 -------------- %Y A287864 Cf. A002620, A274616, A274933, A287867. %K A287864 nonn %O A287864 1,4 %A A287864 _N. J. A. Sloane_, Jun 03 2017 %E A287864 a(15)-a(100) from _Rob Pratt_, Jun 04 2017