A287865 a(n) = gpf(2*a(n-1)+1), with a(1)=1, where gpf = A006530.
1, 3, 7, 5, 11, 23, 47, 19, 13, 3, 7, 5, 11, 23, 47, 19, 13, 3, 7, 5, 11, 23, 47, 19, 13, 3, 7, 5, 11, 23, 47, 19, 13, 3, 7, 5, 11, 23, 47, 19, 13, 3, 7, 5, 11, 23, 47, 19, 13, 3, 7, 5, 11, 23, 47, 19, 13, 3, 7, 5, 11, 23, 47, 19, 13, 3, 7, 5, 11, 23, 47, 19, 13, 3, 7, 5
Offset: 1
References
- Oskars Rieksts, Email to N. J. A. Sloane, Jun 04 2017.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,1).
Crossrefs
Cf. A006530.
Programs
-
Maple
gpf:= n->max(1, op(numtheory[factorset](n))); # A006530 a:=[1]; i:=1; for n from 1 to 100 do i:=gpf(2*i+1); a:=[op(a),i]; od: a;
-
Mathematica
LinearRecurrence[PadLeft[{1}, 8], {1, 3, 7, 5, 11, 23, 47, 19, 13}, 100] (* Paolo Xausa, Feb 02 2025 *)
-
PARI
Vec(x*(1 + 3*x + 7*x^2 + 5*x^3 + 11*x^4 + 23*x^5 + 47*x^6 + 19*x^7 + 12*x^8) / ((1 - x)*(1 + x)*(1 + x^2)*(1 + x^4)) + O(x^100)) \\ Colin Barker, Jun 04 2017
-
Python
from sympy import primefactors l=[0, 1] for n in range(2, 77): l.append(primefactors(2*l[n - 1] + 1)[-1]) print(l[1:]) # Indranil Ghosh, Jun 04 2017
Formula
From Colin Barker, Jun 04 2017: (Start)
G.f.: x*(1 + 3*x + 7*x^2 + 5*x^3 + 11*x^4 + 23*x^5 + 47*x^6 + 19*x^7 + 12*x^8) / ((1 - x)*(1 + x)*(1 + x^2)*(1 + x^4)).
a(n) = a(n-8) for n>9. (End)
Comments