cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287865 a(n) = gpf(2*a(n-1)+1), with a(1)=1, where gpf = A006530.

Original entry on oeis.org

1, 3, 7, 5, 11, 23, 47, 19, 13, 3, 7, 5, 11, 23, 47, 19, 13, 3, 7, 5, 11, 23, 47, 19, 13, 3, 7, 5, 11, 23, 47, 19, 13, 3, 7, 5, 11, 23, 47, 19, 13, 3, 7, 5, 11, 23, 47, 19, 13, 3, 7, 5, 11, 23, 47, 19, 13, 3, 7, 5, 11, 23, 47, 19, 13, 3, 7, 5, 11, 23, 47, 19, 13, 3, 7, 5
Offset: 1

Views

Author

N. J. A. Sloane, Jun 04 2017

Keywords

Comments

Periodic with period length 8.

References

  • Oskars Rieksts, Email to N. J. A. Sloane, Jun 04 2017.

Crossrefs

Cf. A006530.

Programs

  • Maple
    gpf:= n->max(1, op(numtheory[factorset](n))); # A006530
    a:=[1]; i:=1;
    for n from 1 to 100 do i:=gpf(2*i+1); a:=[op(a),i]; od:
    a;
  • Mathematica
    LinearRecurrence[PadLeft[{1}, 8], {1, 3, 7, 5, 11, 23, 47, 19, 13}, 100] (* Paolo Xausa, Feb 02 2025 *)
  • PARI
    Vec(x*(1 + 3*x + 7*x^2 + 5*x^3 + 11*x^4 + 23*x^5 + 47*x^6 + 19*x^7 + 12*x^8) / ((1 - x)*(1 + x)*(1 + x^2)*(1 + x^4)) + O(x^100)) \\ Colin Barker, Jun 04 2017
  • Python
    from sympy import primefactors
    l=[0, 1]
    for n in range(2, 77):
        l.append(primefactors(2*l[n - 1] + 1)[-1])
    print(l[1:]) # Indranil Ghosh, Jun 04 2017
    

Formula

From Colin Barker, Jun 04 2017: (Start)
G.f.: x*(1 + 3*x + 7*x^2 + 5*x^3 + 11*x^4 + 23*x^5 + 47*x^6 + 19*x^7 + 12*x^8) / ((1 - x)*(1 + x)*(1 + x^2)*(1 + x^4)).
a(n) = a(n-8) for n>9. (End)