A287870 The extended Wythoff array (the Wythoff array with two extra columns) read by antidiagonals downwards.
0, 1, 1, 1, 3, 2, 2, 4, 4, 3, 3, 7, 6, 6, 4, 5, 11, 10, 9, 8, 5, 8, 18, 16, 15, 12, 9, 6, 13, 29, 26, 24, 20, 14, 11, 7, 21, 47, 42, 39, 32, 23, 17, 12, 8, 34, 76, 68, 63, 52, 37, 28, 19, 14, 9, 55, 123, 110, 102, 84, 60, 45, 31, 22, 16, 10, 89, 199, 178, 165, 136, 97, 73, 50, 36, 25, 17, 11
Offset: 1
Examples
The extended Wythoff array is the Wythoff array with two extra columns, giving the row number n and A000201(n), separated from the main array by a vertical bar: 0 1 | 1 2 3 5 8 13 21 34 55 89 144 ... 1 3 | 4 7 11 18 29 47 76 123 199 322 521 ... 2 4 | 6 10 16 26 42 68 110 178 288 466 754 ... 3 6 | 9 15 24 39 63 102 165 267 432 699 1131 ... 4 8 | 12 20 32 52 84 136 220 356 576 932 1508 ... 5 9 | 14 23 37 60 97 157 254 411 665 1076 1741 ... 6 11 | 17 28 45 73 118 191 309 500 809 1309 2118 ... 7 12 | 19 31 50 81 131 212 343 555 898 1453 2351 ... 8 14 | 22 36 58 94 152 246 398 644 1042 1686 2728 ... 9 16 | 25 41 66 107 173 280 453 733 1186 1919 3105 ... 10 17 | 27 44 71 115 186 301 487 788 1275 2063 3338 ... 11 19 | 30 49 79 ... 12 21 | 33 54 87 ... 13 22 | 35 57 92 ... 14 24 | 38 62 ... 15 25 | 40 65 ... 16 27 | 43 70 ... 17 29 | 46 75 ... 18 30 | 48 78 ... 19 32 | 51 83 ... 20 33 | 53 86 ... 21 35 | 56 91 ... 22 37 | 59 96 ... 23 38 | 61 99 ... 24 40 | 64 ... 25 42 | 67 ... 26 43 | 69 ... 27 45 | 72 ... 28 46 | 74 ... 29 48 | 77 ... 30 50 | 80 ... 31 51 | 82 ... 32 53 | 85 ... 33 55 | 88 ... 34 56 | 90 ... 35 58 | 93 ... 36 59 | 95 ... 37 61 | 98 ... 38 63 | ... ... From _Peter Munn_, Sep 12 2022: (Start) In the table below, the array terms are shown in the small box at the bottom right of the cells. At the top of each cell is shown a pattern of Fibonacci terms, with "*" indicating a Fibonacci term that appears below it. Those Fibonacci terms sum to the array term. The pattern never includes "**", which would indicate 2 consecutive Fibonacci terms. Note that a Fibonacci term shown as "1" in the 2nd column is F_1, so it may accompany "2", which is F_3. In other columns a Fibonacci term shown as "1" is F_2 and may not accompany "2". +----------+-----------+------------+------------+------------+ | * | * | * | * | * | | 0 __| 1 ___| 1 ___| 2 ___| 3 ___| | |0 | | 1 | | 1 | | 2 | | 3 | |----------+-----------+------------+------------+------------| | * * | * * | * * | * * | * * | | 0 __| 1 ___| 1 ___| 2 ___| 3 ___| | 1 |1 | 2 | 3 | 3 | 4 | 5 | 7 | 8 |11 | |----------+-----------+------------+------------+------------| | * * | * * | * * | * * | * * | | 2 0 __| 3 1 ___| 5 1 ___| 8 2 ___| 13 3 ___| | |2 | | 4 | | 6 | |10 | |16 | |----------+-----------+------------+------------+------------| | * * | * * | * * | * * | * * | | 0 __| 1 ___| 1 ___| 2 ___| 3 ___| | 3 |3 | 5 | 6 | 8 | 9 | 13 |15 | 21 |24 | |----------+-----------+------------+------------+------------| | * * * | * * * | * * * | * * * | * * * | | 0 | 1 | 1 | 2 | 3 | | 1 __| 2 ___| 3 ___| 5 ___| 8 ___| | 3 |4 | 5 | 8 | 8 |12 | 13 |20 | 21 |32 | |----------+-----------+------------+------------+------------| | * * | * * | * * | * * | * * | | 0 __| 1 ___| 1 ___| 2 ___| 3 ___| | 5 |5 | 8 | 9 | 13 |14 | 21 |23 | 34 |37 | |----------+-----------+------------+------------+------------| | * * * | * * * | * * * | * * * | * * * | | 0 __| 1 ___| 1 ___| 2 ___| 3 ___| | 5 1 |6 | 8 2 |11 | 13 3 |17 | 21 5 |28 | 34 8 |45 | |----------+-----------+------------+------------+------------| | * * * | * * * | * * * | * * * | * * * | | 2 0 __| 3 1 ___| 5 1 ___| 8 2 ___| 13 3 ___| | 5 |7 | 8 |12 | 13 |19 | 21 |31 | 34 |50 | +----------+-----------+------------+------------+------------+ If we replace the Fibonacci terms 0, 1, 1, 2, 3, 5, ... in the main part of the cells with the powers of 2 (1, 2, 4, ...) the sums in the small boxes become the terms of A356875. From this may be seen a relationship to A054582. - - - - - Each row of the extended Wythoff array satisfies the Fibonacci recurrence, and may be further extended to the left using this recurrence backwards: ... -1 1 0 1 | 1 2 3 5 ... ... -1 2 1 3 | 4 7 11 18 ... ... 0 2 2 4 | 6 10 16 26 ... ... 0 3 3 6 | 9 15 24 39 ... ... 0 4 4 8 | 12 20 32 52 ... ... 1 4 5 9 | 14 23 37 60 ... ... 1 5 6 11 | 17 28 45 73 ... ... 2 5 7 12 | 19 31 50 81 ... ... 2 6 8 14 | 22 36 58 94 ... ... ... 5 10 15 25 | 40 65 105 170 ... ... Note that multiples (*2, *3 and *4) of the top (Fibonacci sequence) row appear a little below, but shifted 2 columns to the left. Larger multiples appear further down and shifted further to the left, starting with row 15, where the terms are 5 times those in the top row and shifted 4 columns leftwards. (End)
Links
- Peter G. Anderson, More Properties of the Zeckendorf Array, Fib. Quart. 52-5 (2014), 15-21.
- John Conway and Alex Ryba, The extra Fibonacci series and the Empire State Building, Math. Intelligencer 38 (2016), no. 1, 41-48. See preview, at ResearchGate.
- Encyclopedia of Mathematics, Zeckendorf representation
- Clark Kimberling, The Zeckendorf array equals the Wythoff array, Fibonacci Quarterly, Vol. 33, No. 1 (1995), pp. 3-8.
Crossrefs
See A014417 for sequences related to Zeckendorf representation.
Comments