A287879 Irregular triangle read by rows: normalized dimensions of certain generalized quadratic residue codes of length n.
2, 4, 2, 8, 6, 16, 16, 18, 32, 40, 50, 64, 96, 132, 146, 128, 224, 336, 406, 256, 512, 832, 1088, 1186, 512, 1152, 2016, 2832, 3330, 1024, 2560, 4800, 7200, 9060, 9762, 2048, 5632, 11264, 17952, 24024, 27654, 4096, 12288, 26112, 44032, 62352, 76176, 81330, 8192, 26624, 59904, 106496, 158912, 204984, 232050, 16384, 57344, 136192, 254464, 398720, 540736, 645540, 684210
Offset: 1
Examples
Triangle begins: [2], [4, 2], [8, 6], [16, 16, 18], [32, 40, 50], [64, 96, 132, 146], [128, 224, 336, 406], [256, 512, 832, 1088, 1186], [512, 1152, 2016, 2832, 3330], [1024, 2560, 4800, 7200, 9060, 9762], [2048, 5632, 11264, 17952, 24024, 27654], [4096, 12288, 26112, 44032, 62352, 76176, 81330], [8192, 26624, 59904, 106496, 158912, 204984, 232050], [16384, 57344, 136192, 254464, 398720, 540736, 645540, 684210], ...
Links
- Harold N. Ward, Quadratic residue codes in their prime, Journal of Algebra, 150.1 (1992): 87-100. See Table I.
Crossrefs
Programs
-
Maple
g:=proc(m,w) local k; if w=0 then 2^m else 2^m*add( (m/(m-w))*binomial(w-1,w-k)*binomial(m-w,k)/4^k, k=1..w); fi; end; for n from 1 to 14 do lprint( [seq(g(n,w),w=0..floor(n/2))]); od;
Formula
See Ward, pp. 99-100, or the Maple code below.