This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287892 #15 Feb 18 2020 19:25:34 %S A287892 1,1,1,3,7,25,88,366,1583,7336,34982,172384,867638,4452029,23194392, %T A287892 122462546,653957197,3527218134,19192275883,105248481503,581223149532, %U A287892 3230039198628,18053111982952,101426901301489,572554846192811,3246191706162233,18478844801342495 %N A287892 Number of unrooted unlabeled 4-cactus graphs on 3n+1 nodes. %H A287892 Andrew Howroyd, <a href="/A287892/b287892.txt">Table of n, a(n) for n = 0..500</a> %H A287892 Maryam Bahrani and Jérémie Lumbroso, <a href="http://arxiv.org/abs/1608.01465">Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition</a>, arXiv:1608.01465 [math.CO], 2016. %F A287892 G.f.: g(x) + x*(2*g(x^4) + 3*g(x^2)^2 - 2*g(x)^2*g(x^2) - 3*g(x)^4)/8 where g(x) is the g.f. of A287891. %o A287892 (PARI) \\ Here G(n) is A287891 as vector. %o A287892 EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} %o A287892 G(n)={my(v=[]); for(n=1, n, my(g=1+x*Ser(v)); v=EulerT(Vec(g*(g^2 + subst(g, x, x^2))/2))); concat([1], v)} %o A287892 seq(n)={my(p=Ser(G(n))); my(g(d)=subst(p,x,x^d)); Vec(g(1) + x*(2*g(4) + 3*g(2)^2 - 2*g(1)^2*g(2) - 3*g(1)^4)/8)} \\ _Andrew Howroyd_, Feb 18 2020 %Y A287892 Column k=4 of A332649. %Y A287892 Cf. A003081, A287889, A287890, A287891. %K A287892 nonn %O A287892 0,4 %A A287892 _N. J. A. Sloane_, Jun 21 2017 %E A287892 a(0) changed and terms a(12) and beyond from _Andrew Howroyd_, Feb 18 2020