cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287918 Union of nonprime 1 <= t <= m for m in A036913, with gcd(t,m) = 1.

This page as a plain text file.
%I A287918 #13 Sep 24 2018 02:40:59
%S A287918 1,25,35,49,55,65,77,85,91,95,115,119,121,125,133,143,145,155,161,169,
%T A287918 185,187,203,205,209,215,217,221,235,247,253,259,265,287,289,295,299,
%U A287918 301,305,319,323,325,329,335,341,343,355,361,365,371,377,391,395,403
%N A287918 Union of nonprime 1 <= t <= m for m in A036913, with gcd(t,m) = 1.
%C A287918 List of nonprime totatives t of m for m in A036913.
%C A287918 Nonprime 1 is coprime to all numbers, thus a(1) = 1.
%C A287918 The integers {175, 245, 275} are absent, distinguishing this sequence from A038509 and A067793. These terms have factors 5^2 * 7, 5 * 7^2, 5^2 * 11. Only the terms in positions {2, 3, 4, 6, 8, 11, 18} of A036913 (i.e., {6, 12, 18, 42, 66, 126, 462}) are larger and coprime to 5. Of these only 462 is greater than these three terms, however 462 is divisible by 7 and 11. Thus {175, 245, 275} are not terms.
%C A287918 Squared primes q^2 for q >= 5 appear in the sequence at positions {2, 4, 13, 20, 35, 48, 71, 107, 123, 173, ...}. These are coprime to and smaller than {42, 60, 126, 210, 330, 420, ...} at indices {6, 7, 11, 13, 16, 17, 20, 25, 25, 28, 30, 30, 31, 40, 33, 35, ...} in A036913.
%e A287918 From _Michael De Vlieger_, Jun 14 2017: (Start)
%e A287918 List of nonprime totatives 1 <= t <= m for m <= 210 in A036913:
%e A287918     m: 1 <= t <= m
%e A287918     2: 1;
%e A287918     6: 1;
%e A287918    12: 1;
%e A287918    18: 1;
%e A287918    30: 1;
%e A287918    42: 1, 25;
%e A287918    60: 1, 49;
%e A287918    66: 1, 25, 35, 49, 65;
%e A287918    90: 1, 49, 77;
%e A287918   120: 1, 49, 77, 91, 119;
%e A287918   126: 1, 25, 55, 65, 85, 95, 115, 121, 125;
%e A287918   150: 1, 49, 77, 91, 119, 121, 133, 143;
%e A287918   210: 1, 121, 143, 169, 187, 209;
%e A287918        ...
%e A287918 Indices of A036913 of first and last terms m such that gcd(a(n),m)=1:
%e A287918    n   a(n)   Freq.  First   Last
%e A287918   -------------------------------
%e A287918    1      1     oo       1     oo
%e A287918    2     25      4       6     18
%e A287918    3     35      1       8      8
%e A287918    4     49     14       7     40
%e A287918    5     55      1      11     11
%e A287918    6     65      3       8     18
%e A287918    7     77      8       9     24
%e A287918    8     85      2      11     18
%e A287918    9     91     11      10     40
%e A287918   10     95      2      11     18
%e A287918   11    115      2      11     18
%e A287918   12    119      9      10     27
%e A287918   13    121     75      11    308
%e A287918   14    125      2      11     18
%e A287918   15    133     10      12     40
%e A287918   16    143     36      12    107
%e A287918   17    145      1      18     18
%e A287918   18    155      1      18     18
%e A287918   19    161      8      14     40
%e A287918   20    169     96      13    248
%e A287918   ...
%e A287918 Positions of squared primes q^2 in a(n):
%e A287918         q^2           q
%e A287918     n   a(n)  sqrt(a(n))     k    m = A036913(k)
%e A287918   ----------------------------------------------
%e A287918     2     25          5      6       42
%e A287918     4     49          7      7       60
%e A287918    13    121         11     11      126
%e A287918    20    169         13     13      210
%e A287918    35    289         17     16      330
%e A287918    48    361         19     17      420
%e A287918    71    529         23     20      630
%e A287918   107    841         29     25     1050
%e A287918   123    961         31     25     1050
%e A287918   173   1369         37     28     1470
%e A287918   210   1681         41     30     1890
%e A287918   234   1849         43     30     1890
%e A287918   283   2209         47     31     2310
%e A287918   303   2401         49     40     5610
%e A287918   359   2809         53     33     2940
%e A287918   456   3481         59     35     3570
%e A287918   486   3721         61     36     3990
%e A287918   598   4489         67     37     4620
%e A287918   676   5041         71     39     5460
%e A287918   721   5329         73     39     5460
%e A287918   ...
%e A287918 (End)
%t A287918 With[{nn = 403, s = Union@FoldList[Max, Values[#][[All, -1]]] &@ KeySort@ PositionIndex@ EulerPhi@ Range[Product[Prime@ i, {i, 8}]]}, Union@ Flatten@ Map[Function[n, Select[Range@ Min[n, nn], And[CoprimeQ[#, n], ! PrimeQ@ #] &]], s]] (* _Michael De Vlieger_, Jun 14 2017 *)
%Y A287918 Cf. A001248, A036913, A038509, A067793, A285784, A287917.
%K A287918 nonn
%O A287918 1,2
%A A287918 _Jamie Morken_ and _Michael De Vlieger_, Jun 11 2017