This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287918 #13 Sep 24 2018 02:40:59 %S A287918 1,25,35,49,55,65,77,85,91,95,115,119,121,125,133,143,145,155,161,169, %T A287918 185,187,203,205,209,215,217,221,235,247,253,259,265,287,289,295,299, %U A287918 301,305,319,323,325,329,335,341,343,355,361,365,371,377,391,395,403 %N A287918 Union of nonprime 1 <= t <= m for m in A036913, with gcd(t,m) = 1. %C A287918 List of nonprime totatives t of m for m in A036913. %C A287918 Nonprime 1 is coprime to all numbers, thus a(1) = 1. %C A287918 The integers {175, 245, 275} are absent, distinguishing this sequence from A038509 and A067793. These terms have factors 5^2 * 7, 5 * 7^2, 5^2 * 11. Only the terms in positions {2, 3, 4, 6, 8, 11, 18} of A036913 (i.e., {6, 12, 18, 42, 66, 126, 462}) are larger and coprime to 5. Of these only 462 is greater than these three terms, however 462 is divisible by 7 and 11. Thus {175, 245, 275} are not terms. %C A287918 Squared primes q^2 for q >= 5 appear in the sequence at positions {2, 4, 13, 20, 35, 48, 71, 107, 123, 173, ...}. These are coprime to and smaller than {42, 60, 126, 210, 330, 420, ...} at indices {6, 7, 11, 13, 16, 17, 20, 25, 25, 28, 30, 30, 31, 40, 33, 35, ...} in A036913. %e A287918 From _Michael De Vlieger_, Jun 14 2017: (Start) %e A287918 List of nonprime totatives 1 <= t <= m for m <= 210 in A036913: %e A287918 m: 1 <= t <= m %e A287918 2: 1; %e A287918 6: 1; %e A287918 12: 1; %e A287918 18: 1; %e A287918 30: 1; %e A287918 42: 1, 25; %e A287918 60: 1, 49; %e A287918 66: 1, 25, 35, 49, 65; %e A287918 90: 1, 49, 77; %e A287918 120: 1, 49, 77, 91, 119; %e A287918 126: 1, 25, 55, 65, 85, 95, 115, 121, 125; %e A287918 150: 1, 49, 77, 91, 119, 121, 133, 143; %e A287918 210: 1, 121, 143, 169, 187, 209; %e A287918 ... %e A287918 Indices of A036913 of first and last terms m such that gcd(a(n),m)=1: %e A287918 n a(n) Freq. First Last %e A287918 ------------------------------- %e A287918 1 1 oo 1 oo %e A287918 2 25 4 6 18 %e A287918 3 35 1 8 8 %e A287918 4 49 14 7 40 %e A287918 5 55 1 11 11 %e A287918 6 65 3 8 18 %e A287918 7 77 8 9 24 %e A287918 8 85 2 11 18 %e A287918 9 91 11 10 40 %e A287918 10 95 2 11 18 %e A287918 11 115 2 11 18 %e A287918 12 119 9 10 27 %e A287918 13 121 75 11 308 %e A287918 14 125 2 11 18 %e A287918 15 133 10 12 40 %e A287918 16 143 36 12 107 %e A287918 17 145 1 18 18 %e A287918 18 155 1 18 18 %e A287918 19 161 8 14 40 %e A287918 20 169 96 13 248 %e A287918 ... %e A287918 Positions of squared primes q^2 in a(n): %e A287918 q^2 q %e A287918 n a(n) sqrt(a(n)) k m = A036913(k) %e A287918 ---------------------------------------------- %e A287918 2 25 5 6 42 %e A287918 4 49 7 7 60 %e A287918 13 121 11 11 126 %e A287918 20 169 13 13 210 %e A287918 35 289 17 16 330 %e A287918 48 361 19 17 420 %e A287918 71 529 23 20 630 %e A287918 107 841 29 25 1050 %e A287918 123 961 31 25 1050 %e A287918 173 1369 37 28 1470 %e A287918 210 1681 41 30 1890 %e A287918 234 1849 43 30 1890 %e A287918 283 2209 47 31 2310 %e A287918 303 2401 49 40 5610 %e A287918 359 2809 53 33 2940 %e A287918 456 3481 59 35 3570 %e A287918 486 3721 61 36 3990 %e A287918 598 4489 67 37 4620 %e A287918 676 5041 71 39 5460 %e A287918 721 5329 73 39 5460 %e A287918 ... %e A287918 (End) %t A287918 With[{nn = 403, s = Union@FoldList[Max, Values[#][[All, -1]]] &@ KeySort@ PositionIndex@ EulerPhi@ Range[Product[Prime@ i, {i, 8}]]}, Union@ Flatten@ Map[Function[n, Select[Range@ Min[n, nn], And[CoprimeQ[#, n], ! PrimeQ@ #] &]], s]] (* _Michael De Vlieger_, Jun 14 2017 *) %Y A287918 Cf. A001248, A036913, A038509, A067793, A285784, A287917. %K A287918 nonn %O A287918 1,2 %A A287918 _Jamie Morken_ and _Michael De Vlieger_, Jun 11 2017