A287919 Square array T(0,n) = prime(n) and T(m+1,n) = T(m,n) + T(m,n+1), m >= 0, n >= 1, read by falling antidiagonals.
2, 3, 5, 5, 8, 13, 7, 12, 20, 33, 11, 18, 30, 50, 83, 13, 24, 42, 72, 122, 205, 17, 30, 54, 96, 168, 290, 495, 19, 36, 66, 120, 216, 384, 674, 1169, 23, 42, 78, 144, 264, 480, 864, 1538, 2707, 29, 52, 94, 172, 316, 580, 1060, 1924, 3462, 6169
Offset: 0
Examples
The array starts: [0] 2 3 5 7 11 13 17 19 23 29 ... (A000040) [1] 5 8 12 18 24 30 36 42 52 60 ... (A001043) [2] 13 20 30 42 54 66 78 94 112 128 ... (A096277) [3] 33 50 72 96 120 144 172 206 240 274 ... (A096278) [4] 83 122 168 216 264 316 378 446 514 582 ... (A096279) [5] 205 290 384 480 580 694 824 960 1096 1226 ... [6] 495 674 864 1060 1274 1518 1784 2056 2322 2570 ... [7] 1169 1538 1924 2334 2792 3302 3840 4378 4892 5380 ... ... First column is A007443: binomial transform of primes. Second column is A178167: binomial transform of odd primes.
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Programs
-
Mathematica
A287919list[dmax_]:=With[{a=Reverse[NestList[ListConvolve[{1,1},#]&,Prime[Range[dmax]],dmax-1]]},Array[Reverse[Diagonal[a,#]]&,dmax,1-dmax]]; A287919list[10] (* Generates 10 antidiagonals *) (* Paolo Xausa, Oct 31 2023 *)
-
PARI
A287919(m,n)=sum(k=0,m,prime(n+k)*binomial(m,k)) /* read by antidiagonals */ for(m=0,13,for(n=0,m,print1(A287919(n,m-n+1)",")))