This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287936 #19 Jun 21 2017 04:23:28 %S A287936 1,1,19,583,132809,46840699,4068990560161,1204567303451311, %T A287936 4146897304424408411,18814360006695807527868793, %U A287936 21431473463327429953796293981397,911368783375270623395381542054690099,3805483535214088799368825731508632105336401423 %N A287936 Numerator of moments of Rvachëv function up(x). %C A287936 a(n)/A287937(n) is equal to the integral of t^(2n) * up(t), the moment of the Rvachëv function. The Rvachëv function is related to the Fabius function; up(x)=F(x+1) for |x|<1 and up(x)=0 for |x|>=1, where F is the Fabius function. %H A287936 J. Arias de Reyna, <a href="https://arxiv.org/abs/1702.05442">An infinitely differentiable function with compact support:Definition and properties</a>, arXiv:1702.05442 [math.CA], 2017. %H A287936 J. Arias de Reyna, <a href="https://arxiv.org/abs/1702.06487">Arithmetic of the Fabius function</a>, arXiv:1702.06487 [math.NT], 2017. %F A287936 Recurrence c(0)=1, c(n)=Sum_{k=0..n-1}(binomial(2n+1,2k) c_k)/((2n+1)*(2^(2n)-1)), where c(n)=a(n)/A287937(n). %t A287936 c[0] = 1; %t A287936 c[n_] := c[n] = %t A287936 Sum[Binomial[2 n + 1, 2 k] c[k], {k, 0, n - 1}]/((2 n + 1) (2^(2 n) - 1)); %t A287936 Table[Numerator[c[n]], {n, 0, 30}] %Y A287936 Cf. A287937, A287938. %K A287936 nonn,frac %O A287936 0,3 %A A287936 _Juan Arias-de-Reyna_, Jun 03 2017