cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287943 T(1, c) = prime(c). T(r + 1, c) = (T(r, c') + T(r, c'+1)) / 2 where c' is the c-th number such that T(r, c') + T(r, c'+1) is even. Table for T read downwards by antidiagonals.

This page as a plain text file.
%I A287943 #40 Mar 23 2025 23:34:16
%S A287943 2,3,4,5,6,5,7,9,28,30,11,12,32,60,45,13,15,53,68,64,97,17,18,58,85,
%T A287943 130,223,160,19,21,62,116,193,322,558,359,23,26,74,144,208,401,868,
%U A287943 713,536,29,30,96,165,238,540,957,1180,1553,2866,31,34,136,186,265,576,1403
%N A287943 T(1, c) = prime(c). T(r + 1, c) = (T(r, c') + T(r, c'+1)) / 2 where c' is the c-th number such that T(r, c') + T(r, c'+1) is even. Table for T read downwards by antidiagonals.
%C A287943 This array has the same idea as Gilbreath's conjecture (see A036262) but instead of absolute difference it is the integer average sum.
%H A287943 Robert G. Wilson v, <a href="/A287943/b287943.txt">Table of n, a(n) for n = 1..465</a>
%e A287943 Row
%e A287943 1:           2          3          5          7         11         13         17
%e A287943 2:           4          6          9         12         15         18         21
%e A287943 3:           5         28         32         53         58         62         74
%e A287943 4:          30         60         68         85        116        144        165
%e A287943 5:          45         64        130        193        208        238        265
%e A287943 6:          97        223        322        401        540        576        765
%e A287943 7:         160        558        868        957       1403       1531       1598
%e A287943 8:         359        713       1180       1467       1639       1808       3131
%e A287943 9:         536       1553       4179       5178       6335       7865       9274
%e A287943 10:       2866       7100      14023      14900      15838      17837      20121
%e A287943 11:       4983      15369      18979      22054      28390      43704      47511
%e A287943 12:      10176      17174      25222      36047      60602      87739     120599
%e A287943 13:      13675      21198     104169     155638     193710     201367     223740
%e A287943 14:     174674     271986     372056     479130     542177     553224     581451
%e A287943 15:     223330     322021     425593     590611     650029     807687     924065
%e A287943 16:     373807     508102     620320     728858     865876    1094922    1133312
%e A287943 17:     564211     674589     797367     980399    1114117    1378160    2055687
%e A287943 18:     619400     735978     888883    1047258    3000375    4135480    5526718
%e A287943 19:     677689    4831099    5819401    7119393    7743933    8367375    9362587
%e A287943 20:    2754394    5325250    6469397    7431663    8055654    8864981   14204980
%e A287943 21:    4039822    6950530   36789607   41026156   43928115   47881364   50592342
%e A287943 22:    5495176   49236853   51408848   61276421   64658379   88092051   96453019
%e A287943 23:   62967400   76375215   92272535  119006122  209296919  261901315  310000824
%e A287943 24:   84323875  235599117  316302735  400483922  497171955  515469235  524697491
%e A287943 25:  159961496  275950926  506320595  520083363  555977282  619254662  638646183
%e A287943 26:  217956211  513201979  587615972  647540001  684757327  812990322 1671545118
%e A287943 27:  365579095  666148664 1242267720 1989912374 2194765721 2371664980 2708581740
%e A287943 28:  954208192 1616090047 2540123360 3262521514 3383785254 3840848685
%e A287943 29: 2901322437 3323153384
%e A287943 etc.
%e A287943 The 2nd row begins with 4, 6 and 9 since it is the integer average, 4 is the average between 3 and 5, six is the average between 5 and 7, and nine is the average between 7 and 11, etc.
%t A287943 t = NestList[Select[(Rest@# + Most@#)/2, IntegerQ] &, Prime@ Range@ 1100, 10]; Table[ t[[n -k +1, k]], {n, 11}, {k, n, 1, -1}] // Flatten
%Y A287943 Cf. A000040, A024675, A036262.
%K A287943 nonn,tabl
%O A287943 1,1
%A A287943 _Zak Seidov_ and _Robert G. Wilson v_, Jun 03 2017