cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287957 Table read by antidiagonals: T(n, k) = greatest common recursive divisor of n and k; n > 0 and k > 0.

This page as a plain text file.
%I A287957 #14 Jun 04 2017 16:38:44
%S A287957 1,1,1,1,2,1,1,1,1,1,1,2,3,2,1,1,1,1,1,1,1,1,2,1,4,1,2,1,1,1,3,1,1,3,
%T A287957 1,1,1,2,1,2,5,2,1,2,1,1,1,1,1,1,1,1,1,1,1,1,2,3,2,1,6,1,2,3,2,1,1,1,
%U A287957 1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,2,7,2,1
%N A287957 Table read by antidiagonals: T(n, k) = greatest common recursive divisor of n and k; n > 0 and k > 0.
%C A287957 We use the definition of recursive divisor given in A282446.
%C A287957 More informally, the prime tower factorization of T(n, k) is the intersection of the prime tower factorizations of n and k (the prime tower factorization of a number is defined in A182318).
%C A287957 This sequence has connections with the classical GCD (A003989).
%C A287957 For any i > 0, j > 0 and k > 0:
%C A287957 - T(i, j) = 1 iff gcd(i, j) = 1,
%C A287957 - A007947(T(i, j)) = A007947(gcd(i, j)),
%C A287957 - T(i, j) >= 1,
%C A287957 - T(i, j) <= min(i, j),
%C A287957 - T(i, j) <= gcd(i, j),
%C A287957 - T(i, 1) = 1,
%C A287957 - T(i, i) = i,
%C A287957 - T(i, j) = T(j, i) (the sequence is commutative),
%C A287957 - T(i, T(j, k)) = T(T(i, j), k) (the sequence is associative),
%C A287957 - T(i, i*j) <= i,
%C A287957 - if gcd(i, j) = 1 then T(i*j, k) = T(i, k) * T(j, k) (the sequence is multiplicative),
%C A287957 - T(i, 2*i) = A259445(i).
%C A287957 See also A287958 for the LCM equivalent.
%H A287957 Rémy Sigrist, <a href="/A287957/b287957.txt">First 100 antidiagonals of array, flattened</a>
%H A287957 Rémy Sigrist, <a href="/A287957/a287957.pdf">Illustration of the first terms</a>
%e A287957 Table starts:
%e A287957 n\k|    1   2   3   4   5   6   7   8   9   10
%e A287957 ---+-----------------------------------------------
%e A287957 1  |    1   1   1   1   1   1   1   1   1    1  ...
%e A287957 2  |    1   2   1   2   1   2   1   2   1    2  ...
%e A287957 3  |    1   1   3   1   1   3   1   1   3    1  ...
%e A287957 4  |    1   2   1   4   1   2   1   2   1    2  ...
%e A287957 5  |    1   1   1   1   5   1   1   1   1    5  ...
%e A287957 6  |    1   2   3   2   1   6   1   2   3    2  ...
%e A287957 7  |    1   1   1   1   1   1   7   1   1    1  ...
%e A287957 8  |    1   2   1   2   1   2   1   8   1    2  ...
%e A287957 9  |    1   1   3   1   1   3   1   1   9    1  ...
%e A287957 10 |    1   2   1   2   5   2   1   2   1   10  ...
%e A287957 ...
%e A287957 T(4, 8) = T(2^2, 2^3) = 2.
%o A287957 (PARI) T(n,k) = my (g=factor(gcd(n,k))); return (prod(i=1, #g~, g[i,1]^T(valuation(n, g[i,1]), valuation(k, g[i,1]))))
%Y A287957 Cf. A003989, A007947, A182318, A259445, A282446, A287958.
%K A287957 nonn,tabl,mult
%O A287957 1,5
%A A287957 _Rémy Sigrist_, Jun 03 2017