cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287958 Table read by antidiagonals: T(n, k) = least recursive multiple of n and k; n > 0 and k > 0.

This page as a plain text file.
%I A287958 #12 Jun 04 2017 16:39:08
%S A287958 1,2,2,3,2,3,4,6,6,4,5,4,3,4,5,6,10,12,12,10,6,7,6,15,4,15,6,7,8,14,6,
%T A287958 20,20,6,14,8,9,8,21,12,5,12,21,8,9,10,18,24,28,30,30,28,24,18,10,11,
%U A287958 10,9,64,35,6,35,64,9,10,11,12,22,30,36,40,42,42,40
%N A287958 Table read by antidiagonals: T(n, k) = least recursive multiple of n and k; n > 0 and k > 0.
%C A287958 We say that m is a recursive multiple of d iff d is a recursive divisor of m (as described in A282446).
%C A287958 More informally, the prime tower factorization of T(n, k) is the union of the prime tower factorizations of n and k (the prime tower factorization of a number is defined in A182318).
%C A287958 This sequence has connections with the classical LCM (A003990).
%C A287958 For any i > 0, j > 0 and k > 0:
%C A287958 - A007947(T(i, j)) = A007947(lcm(i, j)),
%C A287958 - T(i, j) >= 1,
%C A287958 - T(i, j) >= max(i, j),
%C A287958 - T(i, j) >= lcm(i, j),
%C A287958 - T(i, 1) = i,
%C A287958 - T(i, i) = i,
%C A287958 - T(i, j) = T(j, i) (the sequence is commutative),
%C A287958 - T(i, T(j, k)) = T(T(i, j), k) (the sequence is associative),
%C A287958 - T(i, i*j) >= i*j,
%C A287958 - if gcd(i, j) = 1 then T(i, j) = i*j.
%C A287958 See also A287957 for the GCD equivalent.
%H A287958 Rémy Sigrist, <a href="/A287958/b287958.txt">First 100 antidiagonals of array, flattened</a>
%H A287958 Rémy Sigrist, <a href="/A287958/a287958.pdf">Illustration of the first terms</a>
%e A287958 Table starts:
%e A287958 n\k|     1   2   3   4   5   6   7   8   9  10
%e A287958 ---+-----------------------------------------------
%e A287958 1  |     1   2   3   4   5   6   7   8   9  10  ...
%e A287958 2  |     2   2   6   4  10   6  14   8  18  10  ...
%e A287958 3  |     3   6   3  12  15   6  21  24   9  30  ...
%e A287958 4  |     4   4  12   4  20  12  28  64  36  20  ...
%e A287958 5  |     5  10  15  20   5  30  35  40  45  10  ...
%e A287958 6  |     6   6   6  12  30   6  42  24  18  30  ...
%e A287958 7  |     7  14  21  28  35  42   7  56  63  70  ...
%e A287958 8  |     8   8  24  64  40  24  56   8  72  40  ...
%e A287958 9  |     9  18   9  36  45  18  63  72   9  90  ...
%e A287958 10 |    10  10  30  20  10  30  70  40  90  10  ...
%e A287958 ...
%e A287958 T(4, 8) = T(2^2, 2^3) = 2^(2*3) = 2^6 = 64.
%o A287958 (PARI) T(n,k) = if (n*k==0, return (max(n,k))); my (g=factor(lcm(n,k))); return (prod(i=1, #g~, g[i,1]^T(valuation(n, g[i,1]), valuation(k, g[i,1]))))
%Y A287958 Cf. A003990, A007947, A182318, A282446, A287957.
%K A287958 nonn,tabl
%O A287958 1,2
%A A287958 _Rémy Sigrist_, Jun 03 2017