This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287963 #10 May 29 2018 08:28:36 %S A287963 1,1,1,2,5,10,28,71,194,532,1495,4256,12176,35251,102664,300260, %T A287963 881909,2599948,7688164,22788527,67676144,201308938,599676445, %U A287963 1788564038,5339905904,15956230705,47713265536,142763240666,427390085963,1280058256294,3835332884686 %N A287963 Number of Dyck paths of semilength n such that each positive level up to the highest nonempty level has one or two peaks. %H A287963 Alois P. Heinz, <a href="/A287963/b287963.txt">Table of n, a(n) for n = 0..1000</a> %H A287963 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %e A287963 . a(3) = 2: /\ /\ %e A287963 . /\/ \ / \/\ . %e A287963 . %e A287963 . a(4) = 5: /\ /\ /\/\ /\ /\/\ %e A287963 . /\/\/ \ /\/ \/\ /\/ \ / \/\/\ / \/\ . %p A287963 b:= proc(n, j) option remember; `if`(n=j, 1, add( %p A287963 b(n-j, i)*i*(binomial(j-1, i-2) +(i-1)/2* %p A287963 binomial(j-1, i-3)), i=2..min(j+3, n-j))) %p A287963 end: %p A287963 a:= n-> `if`(n=0, 1, b(n, 1)+b(n, 2)): %p A287963 seq(a(n), n=0..35); %t A287963 b[n_, j_] := b[n, j] = If[n == j, 1, Sum[b[n - j, i]*i*(Binomial[j - 1, i - 2] + (i - 1)/2*Binomial[j - 1, i - 3]), {i, 2, Min[j + 3, n - j]}]]; %t A287963 a[n_] := If[n == 0, 1, b[n, 1] + b[n, 2]]; %t A287963 Table[a[n], {n, 0, 35}] (* _Jean-François Alcover_, May 29 2018, from Maple *) %Y A287963 Cf. A000108, A281874, A287843, A287845, A287846. %K A287963 nonn %O A287963 0,4 %A A287963 _Alois P. Heinz_, Jun 03 2017