This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287987 #17 May 24 2018 06:18:12 %S A287987 1,1,1,3,1,8,13,13,54,132,280,547,1219,3904,11107,25082,53777,137751, %T A287987 419831,1257599,3453557,8911341,22636845,59890162,172264224,529706648, %U A287987 1630328686,4765347773,13125989799,35253234315,97531470556,287880507391,894915519516 %N A287987 Number of Dyck paths of semilength n such that all positive levels have the same number of peaks. %H A287987 Alois P. Heinz, <a href="/A287987/b287987.txt">Table of n, a(n) for n = 0..500</a> %H A287987 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %e A287987 . a(3) = 3: /\ /\ %e A287987 . /\/\/\ /\/ \ / \/\ . %e A287987 . %e A287987 . a(5) = 8: %e A287987 . /\/\ /\/\ /\/\ %e A287987 . /\/\/\/\/\ /\/\/ \ /\/ \/\ / \/\/\ %e A287987 . %e A287987 . /\ /\ /\ /\ %e A287987 . /\/ \ / \/\ /\/ \ / \/\ %e A287987 . /\/ \ /\/ \ / \/\ / \/\ . %p A287987 b:= proc(n, k, j) option remember; `if`(n=j, 1, %p A287987 add(binomial(i, k)*binomial(j-1, i-1-k) %p A287987 *b(n-j, k, i), i=1+k..min(j+k, n-j))) %p A287987 end: %p A287987 a:= n-> 1+add(b(n, j$2), j=1..n/2): %p A287987 seq(a(n), n=0..33); %t A287987 b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[Binomial[i, k]*Binomial[j - 1, i - 1 - k]*b[n - j, k, i], {i, 1 + k, Min[j + k, n - j]}]]; %t A287987 a[n_] := 1 + Sum[b[n, j, j], {j, 1, n/2}]; %t A287987 Table[a[n], {n, 0, 33}] (* _Jean-François Alcover_, May 24 2018, translated from Maple *) %Y A287987 Row sums of A288318. %Y A287987 Cf. A000108, A287845, A287846, A287993, A288109. %K A287987 nonn %O A287987 0,4 %A A287987 _Alois P. Heinz_, Jun 03 2017