cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287990 Expansion of Jacobi theta constant (theta_2/2)^36.

This page as a plain text file.
%I A287990 #35 May 17 2022 04:45:28
%S A287990 1,36,630,7176,60165,398412,2184078,10255320,42321942,156590980,
%T A287990 527649912,1639560888,4745867595,12904341336,33190117110,81222775680,
%U A287990 190066236318,427113304920,925107172122,1937505253320,3934709716500,7767340567380,14937197788890
%N A287990 Expansion of Jacobi theta constant (theta_2/2)^36.
%C A287990 Number of ways of writing n as the sum of 36 triangular numbers.
%H A287990 Seiichi Manyama, <a href="/A287990/b287990.txt">Table of n, a(n) for n = 0..10000</a>
%H A287990 Simon Plouffe, <a href="http://vixra.org/abs/1409.0048">Conjectures of the OEIS, as of June 20, 2018</a>
%F A287990 a(0) = 1, a(n) = (36/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0.
%F A287990 a(n) = 1/141557760 * Sum_{a, b, c, x, y, z > 0, a*x + b*y + c*z = 2*n + 9, a == b == c == x == y == z == 1 mod 2 and a > b > c} a*b*c*((a^2 - b^2)*(a^2 - c^2)*(b^2 - c^2))^2.
%F A287990 Euler transform of [36, -36, 36, -36, 36, -36, ...]. - _Simon Plouffe_, Jun 23 2018
%e A287990 5*1 + 3*1 + 1*3 = 7*1 + 3*1 + 1*1 = 2 + 9. So a(1) = (5*3*1*((25-9)*(25-1)*(9-1))^2 + 7*3*1*((49-9)*(49-1)*(9-1))^2) / 141557760 = 36.
%p A287990 a:= proc(n) option remember; `if`(n=0, 1, -add(a(n-j)*add(
%p A287990       36*d*(-1)^d, d=numtheory[divisors](j)), j=1..n)/n)
%p A287990     end:
%p A287990 seq(a(n), n=0..25);  # _Alois P. Heinz_, Jun 23 2018
%t A287990 A002129[n_] := DivisorSum[n, -(-1)^#*#&];
%t A287990 a[n_] := a[n] = If[n == 0, 1, (36/n)*Sum[A002129[k]*a[n-k], {k, 1, n}]];
%t A287990 Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, May 17 2022 *)
%Y A287990 Column k=36 of A286180.
%Y A287990 Cf. A008438 (k=4*1^2), A014805 (k=4*2^2), this sequence (k=4*3^2).
%K A287990 nonn
%O A287990 0,2
%A A287990 _Seiichi Manyama_, Jun 04 2017