This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288078 #14 Oct 17 2018 05:22:12 %S A288078 17454580,1171704435,40121261136,945068384880,17326957790896, %T A288078 264477214235234,3505018618003600,41491242915292306, %U A288078 447708887118504600,4470547991985864322,41790549086980226368,369061676845849000520,3101645444966543203008,24954084939131951164980,193145505023621965434976,1444143475412182351017494,10467259286591304015806600 %N A288078 a(n) is the number of rooted maps with n edges and 4 faces on an orientable surface of genus 3. %H A288078 Sean R. Carrell, Guillaume Chapuy, <a href="http://arxiv.org/abs/1402.6300">Simple recurrence formulas to count maps on orientable surfaces</a>, arXiv:1402.6300 [math.CO], 2014. %t A288078 Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0; %t A288078 Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2n - 1)/3 Q[n - 1, f, g] + (2n - 1)/3 Q[n - 1, f - 1, g] + (2n - 3) (2n - 2) (2n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2k - 1) (2l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]); %t A288078 a[n_] := Q[n, 4, 3]; %t A288078 Table[a[n], {n, 9, 26}] (* _Jean-François Alcover_, Oct 17 2018 *) %o A288078 (PARI) %o A288078 A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x); %o A288078 A288078_ser(N) = { %o A288078 my(y = A000108_ser(N+1)); %o A288078 y*(y-1)^9*(5008230*y^8 + 164100330*y^7 + 620429875*y^6 - 742482075*y^5 - 1203385090*y^4 + 1546511666*y^3 - 224365292*y^2 - 189952744*y + 41589680)/(y-2)^26; %o A288078 }; %o A288078 Vec(A288078_ser(17)) %Y A288078 Rooted maps of genus 3 with n edges and f faces for 1<=f<=10: A288075 f=1, A288076 f=2, A288077 f=3, this sequence, A288079 f=5, A288080 f=6, A288081 f=7, A288262 f=8, A288263 f=9, A288264 f=10. %Y A288078 Column 4 of A269923. %Y A288078 Cf. A000108. %K A288078 nonn %O A288078 9,1 %A A288078 _Gheorghe Coserea_, Jun 07 2017