This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288094 #18 Apr 12 2025 05:18:24 %S A288094 3,8,8,6,9,5,9,6,5,3,7,4,0,8,4,3,4,9,5,4,2,8,5,6,9,9,1,0,9,3,6,7,0,5, %T A288094 6,7,2,7,0,5,3,0,9,5,8,7,5,2,0,1,6,0,4,8,5,8,0,4,3,9,5,3,3,8,6,9,1,7, %U A288094 0,3,7,6,2,2,7,6,7,8,4,7,3,1,7,5,6,7,6,4,0,6,0,6,4,5,8,3,0,0,1,7,4,4,7,6 %N A288094 Decimal expansion of m(7) = Sum_{n>=0} 1/n!7, the 7th reciprocal multifactorial constant. %H A288094 G. C. Greubel, <a href="/A288094/b288094.txt">Table of n, a(n) for n = 1..10000</a> %H A288094 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ReciprocalMultifactorialConstant.html">Reciprocal Multifactorial Constant</a> %F A288094 m(k) = (1/k)*exp(1/k)*(k + Sum_{j=1..k-1} k^(j/k)*(gamma(j/k) - gamma(j/k, 1/k))) where gamma(x) is the Euler gamma function and gamma(a,x) the incomplete gamma function. %e A288094 3.88695965374084349542856991093670567270530958752016048580439533869... %t A288094 m[k_] := (1/k) Exp[1/k] (k + Sum[k^(j/k) (Gamma[j/k] - Gamma[j/k, 1/k]), {j, 1, k - 1}]); RealDigits[m[7], 10, 104][[1]] %t A288094 RealDigits[Total[Table[1/Times@@Range[n,1,-7],{n,0,500}]],10,120][[1]] (* _Harvey P. Dale_, May 21 2023 *) %o A288094 (PARI) default(realprecision, 105); (1/7)*exp(1/7)*(7 + sum(k=1,6, 7^(k/7)*(gamma(k/7) - incgam(k/7, 1/7)))) \\ _G. C. Greubel_, Mar 28 2019 %o A288094 (Magma) SetDefaultRealField(RealField(105)); (1/7)*Exp(1/7)*(7 + (&+[7^(k/7)*Gamma(k/7, 1/7): k in [1..6]])); // _G. C. Greubel_, Mar 28 2019 %o A288094 (Sage) numerical_approx((1/7)*exp(1/7)*(7 + sum(7^(k/7)*(gamma(k/7) - gamma_inc(k/7, 1/7)) for k in (1..6))), digits=105) # _G. C. Greubel_, Mar 28 2019 %Y A288094 Cf. A114799 (n!7), A143280 (m(2)), A288055 (m(3)), A288091 (m(4)), A288092 (m(5)), A288093 (m(6)), this sequence (m(7)), A288095 (m(8)), A288096 (m(9)). %K A288094 nonn,cons %O A288094 1,1 %A A288094 _Jean-François Alcover_, Jun 05 2017