cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288099 Number of solutions to x^4 + y^4 = z^4 mod n.

This page as a plain text file.
%I A288099 #14 Jul 18 2018 02:19:07
%S A288099 1,4,9,24,33,36,49,192,99,132,121,216,97,196,297,1536,193,396,361,792,
%T A288099 441,484,529,1728,925,388,1377,1176,1121,1188,961,6144,1089,772,1617,
%U A288099 2376,1441,1444,873,6336,481,1764,1849,2904,3267,2116,2209,13824,2695,3700,1737
%N A288099 Number of solutions to x^4 + y^4 = z^4 mod n.
%H A288099 Seiichi Manyama, <a href="/A288099/b288099.txt">Table of n, a(n) for n = 1..1000</a>
%o A288099 (PARI) a(n)={my(p=Mod(sum(i=0, n-1, x^lift(Mod(i,n)^4)), 1-x^n)); vecsum(Vec( serconvol(lift(p^2) + O(x^n), lift(p) + O(x^n))))} \\ _Andrew Howroyd_, Jul 17 2018
%Y A288099 Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), A063454 (k=3), this sequence (k=4), A288100 (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10).
%K A288099 nonn,mult
%O A288099 1,2
%A A288099 _Seiichi Manyama_, Jun 05 2017
%E A288099 Keyword:mult added by _Andrew Howroyd_, Jul 17 2018