cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288100 Number of solutions to x^5 + y^5 = z^5 mod n.

This page as a plain text file.
%I A288100 #13 Jul 18 2018 02:19:11
%S A288100 1,4,9,20,25,36,49,112,99,100,151,180,169,196,225,704,289,396,361,500,
%T A288100 441,604,529,1008,1625,676,1377,980,841,900,1951,4864,1359,1156,1225,
%U A288100 1980,1369,1444,1521,2800,601,1764,1849,3020,2475,2116,2209,6336,2695,6500,2601
%N A288100 Number of solutions to x^5 + y^5 = z^5 mod n.
%C A288100 Equivalently, the number of solutions to x^5 + y^5 + z^5 == 0 (mod n). - _Andrew Howroyd_, Jul 17 2018
%H A288100 Seiichi Manyama, <a href="/A288100/b288100.txt">Table of n, a(n) for n = 1..1000</a>
%o A288100 (PARI) a(n)={my(p=Mod(sum(i=0, n-1, x^lift(Mod(i,n)^5)), 1-x^n)); polcoeff(lift(p^3), 0)} \\ _Andrew Howroyd_, Jul 17 2018
%Y A288100 Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), A063454 (k=3), A288099 (k=4), this sequence (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10).
%K A288100 nonn,mult
%O A288100 1,2
%A A288100 _Seiichi Manyama_, Jun 05 2017
%E A288100 Keyword:mult added by _Andrew Howroyd_, Jul 17 2018