cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288101 Number of solutions to x^6 + y^6 = z^6 mod n.

This page as a plain text file.
%I A288101 #14 Jul 18 2018 02:19:15
%S A288101 1,4,9,24,25,36,73,192,243,100,121,216,217,292,225,1024,289,972,217,
%T A288101 600,657,484,529,1728,725,868,2673,1752,841,900,1441,6144,1089,1156,
%U A288101 1825,5832,3241,868,1953,4800,1681,2628,505,2904,6075,2116,2209,9216,3871,2900,2601
%N A288101 Number of solutions to x^6 + y^6 = z^6 mod n.
%H A288101 Seiichi Manyama, <a href="/A288101/b288101.txt">Table of n, a(n) for n = 1..1000</a>
%o A288101 (PARI) a(n)={my(p=Mod(sum(i=0, n-1, x^lift(Mod(i,n)^6)), 1-x^n)); vecsum(Vec( serconvol(lift(p^2) + O(x^n), lift(p) + O(x^n))))} \\ _Andrew Howroyd_, Jul 17 2018
%Y A288101 Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), A063454 (k=3), A288099 (k=4), A288100 (k=5), this sequence (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), A288105 (k=10).
%K A288101 mult,nonn
%O A288101 1,2
%A A288101 _Seiichi Manyama_, Jun 05 2017
%E A288101 Keyword:mult added by _Andrew Howroyd_, Jul 17 2018