This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288103 #15 Jul 18 2018 02:20:31 %S A288103 1,4,9,24,33,36,49,192,99,132,121,216,97,196,297,1536,385,396,361,792, %T A288103 441,484,529,1728,925,388,1377,1176,1121,1188,961,12288,1089,1540, %U A288103 1617,2376,1441,1444,873,6336,641,1764,1849,2904,3267,2116,2209,13824,2695,3700 %N A288103 Number of solutions to x^8 + y^8 = z^8 mod n. %H A288103 Seiichi Manyama, <a href="/A288103/b288103.txt">Table of n, a(n) for n = 1..1000</a> %t A288103 Table[cnt=0; Do[If[Mod[x^8 + y^8 - z^8, n]==0, cnt++], {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 50}] (* _Vincenzo Librandi_, Jul 18 2018 *) %o A288103 (PARI) a(n)={my(p=Mod(sum(i=0, n-1, x^lift(Mod(i,n)^8)), 1-x^n)); vecsum(Vec( serconvol(lift(p^2) + O(x^n), lift(p) + O(x^n))))} \\ _Andrew Howroyd_, Jul 17 2018 %Y A288103 Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), A063454 (k=3), A288099 (k=4), A288100 (k=5), A288101 (k=6), A288102 (k=7), this sequence (k=8), A288104 (k=9), A288105 (k=10). %K A288103 nonn,mult %O A288103 1,2 %A A288103 _Seiichi Manyama_, Jun 05 2017 %E A288103 Keyword:mult added by _Andrew Howroyd_, Jul 17 2018