This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288105 #20 Jul 18 2018 02:19:57 %S A288105 1,4,9,24,25,36,49,192,99,100,201,216,169,196,225,1024,289,396,361, %T A288105 600,441,804,529,1728,3125,676,1377,1176,841,900,601,6144,1809,1156, %U A288105 1225,2376,1369,1444,1521,4800,1201,1764,1849,4824,2475,2116,2209,9216,2695,12500 %N A288105 Number of solutions to x^10 + y^10 = z^10 mod n. %H A288105 Chai Wah Wu, <a href="/A288105/b288105.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Seiichi Manyama) %t A288105 Table[cnt=0; Do[If[Mod[x^10 + y^10 - z^10, n]==0, cnt++], {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 50}] (* _Vincenzo Librandi_, Jul 18 2018 *) %o A288105 (Python) %o A288105 def A288105(n): %o A288105 ndict = {} %o A288105 for i in range(n): %o A288105 m = pow(i,10,n) %o A288105 if m in ndict: %o A288105 ndict[m] += 1 %o A288105 else: %o A288105 ndict[m] = 1 %o A288105 count = 0 %o A288105 for i in ndict: %o A288105 ni = ndict[i] %o A288105 for j in ndict: %o A288105 k = (i+j) % n %o A288105 if k in ndict: %o A288105 count += ni*ndict[j]*ndict[k] %o A288105 return count # _Chai Wah Wu_, Jun 05 2017 %Y A288105 Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), A063454 (k=3), A288099 (k=4), A288100 (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), this sequence (k=10). %K A288105 nonn,mult %O A288105 1,2 %A A288105 _Seiichi Manyama_, Jun 05 2017 %E A288105 Keyword:mult added by _Andrew Howroyd_, Jul 17 2018