cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288105 Number of solutions to x^10 + y^10 = z^10 mod n.

This page as a plain text file.
%I A288105 #20 Jul 18 2018 02:19:57
%S A288105 1,4,9,24,25,36,49,192,99,100,201,216,169,196,225,1024,289,396,361,
%T A288105 600,441,804,529,1728,3125,676,1377,1176,841,900,601,6144,1809,1156,
%U A288105 1225,2376,1369,1444,1521,4800,1201,1764,1849,4824,2475,2116,2209,9216,2695,12500
%N A288105 Number of solutions to x^10 + y^10 = z^10 mod n.
%H A288105 Chai Wah Wu, <a href="/A288105/b288105.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Seiichi Manyama)
%t A288105 Table[cnt=0; Do[If[Mod[x^10 + y^10 - z^10, n]==0, cnt++], {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 50}] (* _Vincenzo Librandi_, Jul 18 2018 *)
%o A288105 (Python)
%o A288105 def A288105(n):
%o A288105     ndict = {}
%o A288105     for i in range(n):
%o A288105         m = pow(i,10,n)
%o A288105         if m in ndict:
%o A288105             ndict[m] += 1
%o A288105         else:
%o A288105             ndict[m] = 1
%o A288105     count = 0
%o A288105     for i in ndict:
%o A288105         ni = ndict[i]
%o A288105         for j in ndict:
%o A288105             k = (i+j) % n
%o A288105             if k in ndict:
%o A288105                 count += ni*ndict[j]*ndict[k]
%o A288105     return count # _Chai Wah Wu_, Jun 05 2017
%Y A288105 Number of solutions to x^k + y^k = z^k mod n: A062775 (k=2), A063454 (k=3), A288099 (k=4), A288100 (k=5), A288101 (k=6), A288102 (k=7), A288103 (k=8), A288104 (k=9), this sequence (k=10).
%K A288105 nonn,mult
%O A288105 1,2
%A A288105 _Seiichi Manyama_, Jun 05 2017
%E A288105 Keyword:mult added by _Andrew Howroyd_, Jul 17 2018