This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288110 #10 Jun 02 2018 10:36:00 %S A288110 1,0,0,1,1,3,4,10,36,83,225,573,1444,3996,11840,34057,95573,267643, %T A288110 754744,2167250,6347944,18754719,55183269,161366349,471263668, %U A288110 1382569548,4085677052,12145287569,36193473369,107824201547,320874528844,954819540526,2845349212512 %N A288110 Number of Dyck paths of semilength n such that each level has exactly three peaks or no peaks. %H A288110 Alois P. Heinz, <a href="/A288110/b288110.txt">Table of n, a(n) for n = 0..1000</a> %H A288110 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %e A288110 a(5) = 3: %e A288110 . /\/\/\ %e A288110 . /\ /\/\ /\/\ /\ / \ %e A288110 . / \/ \ / \/ \ / \ . %p A288110 b:= proc(n, k, j) option remember; `if`(n=j, 1, add( %p A288110 b(n-j, k, i)*(binomial(j-1, i-1)+binomial(i, k) %p A288110 *binomial(j-1, i-1-k)), i=1..min(j+k, n-j))) %p A288110 end: %p A288110 a:= n-> `if`(n=0, 1, b(n, 3$2)): %p A288110 seq(a(n), n=0..40); %t A288110 b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n-j, k, i]*(Binomial[j-1, i-1] + Binomial[i, k]*Binomial[j-1, i-1-k]), {i, 1, Min[j+k, n-j]}]]; %t A288110 a[n_] := If[n == 0, 1, b[n, 3, 3]]; %t A288110 Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Jun 02 2018, from Maple *) %Y A288110 Column k=3 of A288108. %K A288110 nonn %O A288110 0,6 %A A288110 _Alois P. Heinz_, Jun 05 2017