This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288114 #10 Jun 02 2018 10:36:24 %S A288114 1,0,0,0,0,0,0,1,1,7,22,48,93,180,331,575,1150,3578,13268,50808, %T A288114 217173,881980,3064454,9169075,24605669,61450068,147038896,347902716, %U A288114 860591396,2411664484,8038395295,30845855094,126173520602,513951305502,1996531969713 %N A288114 Number of Dyck paths of semilength n such that each level has exactly seven peaks or no peaks. %H A288114 Alois P. Heinz, <a href="/A288114/b288114.txt">Table of n, a(n) for n = 0..1000</a> %H A288114 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %p A288114 b:= proc(n, k, j) option remember; `if`(n=j, 1, add( %p A288114 b(n-j, k, i)*(binomial(j-1, i-1)+binomial(i, k) %p A288114 *binomial(j-1, i-1-k)), i=1..min(j+k, n-j))) %p A288114 end: %p A288114 a:= n-> `if`(n=0, 1, b(n, 7$2)): %p A288114 seq(a(n), n=0..40); %t A288114 b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[j - 1, i - 1] + Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]]; %t A288114 a[n_] := If[n == 0, 1, b[n, 7, 7]]; %t A288114 Table[a[n], {n, 0, 40}](* _Jean-François Alcover_, Jun 02 2018, from Maple *) %Y A288114 Column k=7 of A288108. %K A288114 nonn %O A288114 0,10 %A A288114 _Alois P. Heinz_, Jun 05 2017