This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288164 #17 Jun 16 2017 22:21:53 %S A288164 1,2,2310,1155,3,4,770,1365,6,8,385,1785,12,10,455,231,18,20,595,273, %T A288164 22,30,105,77,26,60,165,91,14,66,195,35,28,78,255,55,38,42,210,65,11, %U A288164 84,390,85,7,114,330,70,13,33,420,130,17,21,462,110,5,39,546,140 %N A288164 Lexicographically earliest sequence of distinct positive terms such that, for any n > 0, a(n)*a(n+2) has at least 5 distinct prime factors. %C A288164 This sequence is a permutation of the natural numbers, with inverse A288799. %C A288164 Conjecturally, a(n) ~ n. %C A288164 For k >= 0, let f_k be the lexicographically earliest sequence of distinct positive terms such that, for any n > 0, a(n)*a(n+k) has at least 5 distinct prime factors. %C A288164 In particular, we have: %C A288164 - f_0 = the numbers with at least 5 distinct prime factors, %C A288164 - f_1 = A285487, %C A288164 - f_2 = a (this sequence), %C A288164 - f_3 = A288171. %C A288164 If k > 0, then: %C A288164 - f_k is a permutation of the natural numbers, %C A288164 - f_k(i) = i for any i <= k, %C A288164 - f_k(k+1) = A002110(5), %C A288164 - conjecturally, f_k(n) ~ n. %H A288164 Rémy Sigrist, <a href="/A288164/b288164.txt">Table of n, a(n) for n = 1..25000</a> %H A288164 Rémy Sigrist, <a href="/A288164/a288164.txt">C++ program for A288164</a> %H A288164 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A288164 The first terms, alongside the primes p dividing a(n)*a(n+2), are: %e A288164 n a(n) p %e A288164 -- ---- -------------- %e A288164 1 1 2, 3, 5, 7, 11 %e A288164 2 2 2, 3, 5, 7, 11 %e A288164 3 2310 2, 3, 5, 7, 11 %e A288164 4 1155 2, 3, 5, 7, 11 %e A288164 5 3 2, 3, 5, 7, 11 %e A288164 6 4 2, 3, 5, 7, 13 %e A288164 7 770 2, 3, 5, 7, 11 %e A288164 8 1365 2, 3, 5, 7, 13 %e A288164 9 6 2, 3, 5, 7, 11 %e A288164 10 8 2, 3, 5, 7, 17 %e A288164 11 385 2, 3, 5, 7, 11 %e A288164 12 1785 2, 3, 5, 7, 17 %e A288164 13 12 2, 3, 5, 7, 13 %e A288164 14 10 2, 3, 5, 7, 11 %e A288164 15 455 2, 3, 5, 7, 13 %e A288164 16 231 2, 3, 5, 7, 11 %e A288164 17 18 2, 3, 5, 7, 17 %e A288164 18 20 2, 3, 5, 7, 13 %e A288164 19 595 2, 5, 7, 11, 17 %e A288164 20 273 2, 3, 5, 7, 13 %e A288164 21 22 2, 3, 5, 7, 11 %e A288164 22 30 2, 3, 5, 7, 11 %e A288164 23 105 2, 3, 5, 7, 13 %Y A288164 Cf. A002110, A285487, A288171, A288799 (inverse). %K A288164 nonn,look %O A288164 1,2 %A A288164 _Rémy Sigrist_, Jun 16 2017