cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288177 Maximum number of vertices of any convex polygon formed by drawing all line segments connecting any two lattice points of an n X m convex lattice polygon in the plane written as triangle T(n,m), n >= 1, 1 <= m <= n.

This page as a plain text file.
%I A288177 #35 Aug 06 2024 11:05:24
%S A288177 3,4,4,4,4,4,4,4,5,5,4,5,5,6,6,4,5,5,6,6,6,4,5,6,6,6,7,7,4,5,7,6,7,7,
%T A288177 7,7,4,5,6,6,7,7,8,8,8,4,5,6,6,7,7,8,8,8,7,4,5,6,6,7,7,8,8,8,8,8,4,5,
%U A288177 7,6,7,7,8,7,8,8,8,8,4,5,8,6,7,7,8,7,8,8,8,8,8,4,5,8,6,7,7,8,8,8,8,8,8,8,8,4,5,8,6,7,7,8,8,8,8,8,8,9,9,9,4,5,7,6,7,7,8,8,8,8,8,8,9,9,9,9,4,5,7,7,8,8,8,8,8,8,8,8,9,9,9,9,9,4,5,8,7,8,8,8,8,8,8,8,8,9,9,9,10,10,9
%N A288177 Maximum number of vertices of any convex polygon formed by drawing all line segments connecting any two lattice points of an n X m convex lattice polygon in the plane written as triangle T(n,m), n >= 1, 1 <= m <= n.
%C A288177 The table is given in the section "Results" of the notes by M. E. Pfetsch and G. M. Ziegler, see link.
%C A288177 An n X m convex lattice polygon presumably means an n X m grid of square cells, formed using a grid of n+1 X m+1 points. - _N. J. A. Sloane_, Feb 07 2019
%H A288177 Huntington Tracy Hall, <a href="https://citeseerx.ist.psu.edu/pdf/e5d8674f2073ad215df390ea390d802103ae6cea">Counterexamples in Discrete Geometry</a>. Dissertation UC, Berkeley, Fall 2004.
%H A288177 Serkan Hosten, Diane Maclagan, and Bernd Sturmfels, <a href="https://arxiv.org/abs/math/0105036">Supernormal Vector Configurations</a>, arXiv:math/0105036 [math.CO], 4 May 2001.
%H A288177 Marc E. Pfetsch and Günter M. Ziegler, <a href="http://www.mathematik.tu-darmstadt.de/~pfetsch/chambers/">Large Chambers in a Lattice Polygon</a> (Notes), March 28, 2001, December 13, 2004.
%H A288177 Marc E. Pfetsch and Günter M. Ziegler, <a href="/A288177/a288177_1.pdf">Large Chambers in a Lattice Polygon</a> (Notes), March 28, 2001, December 13, 2004. [Cached copy, with permission]
%H A288177 Hugo Pfoertner, <a href="/A288177/a288177.pdf">Illustrations of Chamber Complexes up to 5 X 5</a>.
%e A288177 Drawing the diagonals in a lattice square of size 1 X 1 produces 4 triangles, so T(1,1)=3.
%e A288177 Triangle begins:
%e A288177   3;
%e A288177   4, 4;
%e A288177   4, 4, 4;
%e A288177   4, 4, 5, 5;
%e A288177   4, 5, 5, 6, 6;
%e A288177   4, 5, 5, 6, 6, 6;
%e A288177   4, 5, 6, 6, 6, 7, 7;
%e A288177   ...
%Y A288177 Cf. A288178 (diagonal of table), A288179, A288180, A288181, A288187.
%K A288177 nonn,tabl
%O A288177 1,1
%A A288177 _Hugo Pfoertner_, Jun 06 2017