cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288177 Maximum number of vertices of any convex polygon formed by drawing all line segments connecting any two lattice points of an n X m convex lattice polygon in the plane written as triangle T(n,m), n >= 1, 1 <= m <= n.

Table of values

n a(n)
1 3
2 4
3 4
4 4
5 4
6 4
7 4
8 4
9 5
10 5
11 4
12 5
13 5
14 6
15 6
16 4
17 5
18 5
19 6
20 6
21 6
22 4
23 5
24 6
25 6
26 6
27 7
28 7
29 4
30 5
31 7
32 6
33 7
34 7
35 7
36 7
37 4
38 5
39 6
40 6
41 7
42 7
43 8
44 8
45 8
46 4
47 5
48 6
49 6
50 7
51 7
52 8
53 8
54 8
55 7
56 4
57 5
58 6
59 6
60 7
61 7
62 8
63 8
64 8
65 8
66 8
67 4
68 5
69 7
70 6
71 7
72 7
73 8
74 7
75 8
76 8
77 8
78 8
79 4
80 5
81 8
82 6
83 7
84 7
85 8
86 7
87 8
88 8
89 8
90 8
91 8
92 4
93 5
94 8
95 6
96 7
97 7
98 8
99 8
100 8
101 8
102 8
103 8
104 8
105 8
106 4
107 5
108 8
109 6
110 7
111 7
112 8
113 8
114 8
115 8
116 8
117 8
118 9
119 9
120 9
121 4
122 5
123 7
124 6
125 7
126 7
127 8
128 8
129 8
130 8
131 8
132 8
133 9
134 9
135 9
136 9
137 4
138 5
139 7
140 7
141 8
142 8
143 8
144 8
145 8
146 8
147 8
148 8
149 9
150 9
151 9
152 9
153 9
154 4
155 5
156 8
157 7
158 8
159 8
160 8
161 8
162 8
163 8
164 8
165 8
166 9
167 9
168 9
169 10
170 10
171 9

List of values

[3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 5, 5, 6, 6, 4, 5, 5, 6, 6, 6, 4, 5, 6, 6, 6, 7, 7, 4, 5, 7, 6, 7, 7, 7, 7, 4, 5, 6, 6, 7, 7, 8, 8, 8, 4, 5, 6, 6, 7, 7, 8, 8, 8, 7, 4, 5, 6, 6, 7, 7, 8, 8, 8, 8, 8, 4, 5, 7, 6, 7, 7, 8, 7, 8, 8, 8, 8, 4, 5, 8, 6, 7, 7, 8, 7, 8, 8, 8, 8, 8, 4, 5, 8, 6, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 4, 5, 8, 6, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 4, 5, 7, 6, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 4, 5, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 4, 5, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 10, 10, 9]