This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288180 #38 May 21 2021 07:09:07 %S A288180 5,13,37,35,121,353,75,265,771,1761,159,587,1755,4039,8917,275,1019, %T A288180 3075,7035,15419,26773,477,1797,5469,12495,27229,47685,84497,755,2823, %U A288180 8693,19831,43333,76357,135075,215545,1163,4369,13301,30333,66699,117719,207643,331233,508613 %N A288180 Number of intersection points formed by drawing the line segments connecting any two lattice points of an n X m convex lattice polygon written as triangle T(n,m), n >= 1, 1 <= m <= n. %C A288180 If more than two lines intersect in the same point, only one intersection is counted. %D A288180 For references and links see A288177. %H A288180 Lars Blomberg, <a href="/A288180/b288180.txt">Table of n, a(n) for n = 1..325</a> (The first 25 rows) %H A288180 Lars Blomberg, Scott R. Shannon, N. J. A. Sloane, <a href="http://neilsloane.com/doc/rose_5.pdf">Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids</a>, (2021). Also arXiv:2009.07918. %H A288180 Hugo Pfoertner, <a href="/A288177/a288177.pdf">Illustrations of Chamber Complexes up to 5 X 5</a>. %H A288180 Hugo Pfoertner, <a href="/A288180/a288180_1.pdf">Illustration of intersection points up to 6 X 6</a>. %H A288180 <a href="/index/St#Stained">Index entries for sequences related to stained glass windows</a> %e A288180 Triangle starts with: %e A288180 n=1: 5, %e A288180 n=2: 13, 37, %e A288180 n=3: 35, 121, 353, %e A288180 n=4: 75, 265, 771, 1761, %e A288180 n=5: 159, 587, 1755, 4039, 8917, %e A288180 n=6: 275, 1019, 3075, 7035, 15419, 26773, %e A288180 n=7: 477, 1797, 5469, 12495, 27229, 47685, 84497, %e A288180 n=8: 755, 2823, 8693, 19831, 43333, 76357, 135075, 215545, %e A288180 n=9: 1163, 4369, 13301, 30333, 66699, 117719, 207643, 331233, 508613, %e A288180 ... %Y A288180 Cf. A288177, A288187. %Y A288180 For column 2 see A333279, A333280, A333281. %Y A288180 The main diagonal T(n,n) is A343993. %K A288180 nonn,tabl %O A288180 1,1 %A A288180 _Hugo Pfoertner_, Jun 06 2017 %E A288180 Corrected and extended by _Hugo Pfoertner_, Jul 20 2017