A288232 Coefficients in the expansion of 1/([r]-[2*r]*x+[3*r]*x^2-...); []=floor, r=3*e/5.
1, 3, 5, 9, 17, 30, 52, 91, 160, 281, 494, 871, 1537, 2711, 4782, 8437, 14885, 26258, 46320, 81712, 144145, 254277, 448555, 791273, 1395843, 2462330, 4343663, 7662423, 13516866, 23844368, 42062554, 74200268, 130892661, 230900629, 407319256, 718529778
Offset: 0
Crossrefs
Cf. A078140 (includes guide to related sequences).
Programs
-
Mathematica
r = 3E/5; u = 1000; (* # initial terms from given series *) v = 100; (* # coefficients in reciprocal series *) CoefficientList[Series[1/Sum[Floor[r*(k + 1)] (-x)^k, {k, 0, u}], {x, 0, v}], x]
Formula
G.f.: 1/(Sum_{k>=0} [(k+1)*r]*(-x)^k), where r = 3*e/5 and [ ] = floor.
Comments