A288237 Coefficients in the expansion of 1/([r]-[2*r]*x+[3*r]*x^2-...); [ ]=floor, r=sqrt(11/4).
1, 3, 5, 9, 17, 30, 52, 91, 160, 281, 493, 865, 1518, 2664, 4675, 8204, 14397, 25265, 44337, 77806, 136540, 239611, 420488, 737905, 1294933, 2272449, 3987870, 6998224, 12281027, 21551700, 37820597, 66370521, 116472145, 204394366, 358687108, 629451995
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..4089
Crossrefs
Cf. A078140 (includes guide to related sequences).
Programs
-
Maple
N:= 100: # to get a(0)..a(N) r:= sqrt(11/4): G:= 1/add(floor((k+1)*r)*(-x)^k,k=0..N): S:= series(G,x,N+1): seq(coeff(S,x,j),j=0..N); # Robert Israel, Jul 13 2017
-
Mathematica
r = Sqrt[11/4]; u = 1000; (* # initial terms from given series *) v = 100; (* # coefficients in reciprocal series *) CoefficientList[Series[1/Sum[Floor[r*(k + 1)] (-x)^k, {k, 0, u}], {x, 0, v}], x]
Formula
G.f.: 1/(Sum_{k>=0} [(k+1)*r]*(-x)^k), where r = sqrt(11/4) and [ ] = floor.
Comments