This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288252 #20 Jun 15 2018 10:14:34 %S A288252 1,2,3,8,21,38,55,80,144,168,174,195,314,377,682,987,2584,6360,6765, %T A288252 12238,13301,17711,34985,46368,54096,66483,87849,121393,219602,317811, %U A288252 684704,832040,1486717,2178309,3325460,3940598,5702887,6151102,10008701,14930352 %N A288252 Positive integers n such that the Fibonacci (or Zeckendorf) representation of n^2 is a palindrome. %C A288252 The sequence is infinite because F(2n)^2 = A049684(n) has Fibonacci (or Zeckendorf) representation (1000)^(n-1) 1. %H A288252 Giovanni Resta, <a href="/A288252/b288252.txt">Table of n, a(n) for n = 1..60</a> %e A288252 38 is in the sequence because 38^2 = 1444 has Fibonacci representation 101000101000101, which is a palindrome. %p A288252 for n from 1 do %p A288252 zeck := A014417(n^2) ; %p A288252 if isA002113(zeck) then %p A288252 printf("%d,\n",n); %p A288252 end if; %p A288252 end do: # _R. J. Mathar_, Jun 16 2017 %Y A288252 Cf. A014417, which explains Fibonacci representation. Cf. A094202. %K A288252 nonn %O A288252 1,2 %A A288252 _Jeffrey Shallit_, Jun 07 2017 %E A288252 a(35)-a(39) from _Alois P. Heinz_, Jun 14 2018 %E A288252 a(40) from _Giovanni Resta_, Jun 15 2018