cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288253 Number of heptagons that can be formed with perimeter n.

This page as a plain text file.
%I A288253 #33 Mar 10 2023 03:17:42
%S A288253 1,1,2,3,5,6,10,13,19,24,34,42,58,70,93,112,145,171,218,256,320,372,
%T A288253 458,528,643,735,884,1006,1198,1352,1597,1795,2102,2350,2732,3041,
%U A288253 3513,3892,4468,4934,5633,6194,7037,7715,8722,9531,10728,11690
%N A288253 Number of heptagons that can be formed with perimeter n.
%C A288253 Number of (a1, a2, ... , a7) where 1 <= a1 <= ... <= a7 and a1 + a2 + ... + a6 > a7.
%H A288253 Seiichi Manyama, <a href="/A288253/b288253.txt">Table of n, a(n) for n = 7..10000</a>
%H A288253 G. E. Andrews, P. Paule and A. Riese, <a href="http://www.risc.jku.at/publications/download/risc_163/PAIX.pdf">MacMahon's Partition Analysis IX: k-gon partitions</a>, Bull. Austral Math. Soc., 64 (2001), 321-329.
%H A288253 Geoffrey Critzer, <a href="https://esirc.emporia.edu/handle/123456789/3595">Combinatorics of Vector Spaces over Finite Fields</a>, Master's thesis, Emporia State University, 2018. [This thesis cites this sequence entry, but it's just a typo: the intended sequence entry is A288853.]
%H A288253 <a href="/index/Rec#order_49">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 0, 1, 0, 0, 1, 0, -1, -1, -1, 0, 0, -2, 0, 0, 1, 1, 0, 1, 2, 1, 0, 1, -1, 0, -1, -2, -1, 0, -1, -1, 0, 0, 2, 0, 0, 1, 1, 1, 0, -1, 0, 0, -1, 0, -1, 0, 1).
%F A288253 G.f.: x^7/((1-x)*(1-x^2)* ... *(1-x^7)) - x^12/(1-x) * 1/((1-x^2)*(1-x^4)* ... *(1-x^12)).
%F A288253 a(2*n+12) = A026813(2*n+12) - A288341(n), a(2*n+13) = A026813(2*n+13) - A288341(n) for n >= 0. - _Seiichi Manyama_, Jun 08 2017
%Y A288253 Number of k-gons that can be formed with perimeter n: A005044 (k=3), A062890 (k=4), A069906 (k=5), A069907 (k=6), this sequence (k=7), A288254 (k=8), A288255 (k=9), A288256 (k=10).
%K A288253 nonn,easy
%O A288253 7,3
%A A288253 _Seiichi Manyama_, Jun 07 2017