cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288254 Number of octagons that can be formed with perimeter n.

This page as a plain text file.
%I A288254 #20 Jun 08 2017 10:42:23
%S A288254 1,1,2,3,5,7,10,14,20,27,36,48,63,82,104,134,167,211,258,322,389,480,
%T A288254 572,698,825,996,1165,1395,1620,1923,2216,2611,2991,3500,3984,4633,
%U A288254 5248,6066,6836,7860,8820,10089,11273,12835,14288,16197
%N A288254 Number of octagons that can be formed with perimeter n.
%C A288254 Number of (a1, a2, ... , a8) where 1 <= a1 <= ... <= a8 and a1 + a2 + ... + a7 > a8.
%H A288254 Seiichi Manyama, <a href="/A288254/b288254.txt">Table of n, a(n) for n = 8..10000</a>
%H A288254 G. E. Andrews, P. Paule and A. Riese, <a href="http://www.risc.jku.at/publications/download/risc_163/PAIX.pdf">MacMahon's Partition Analysis IX: k-gon partitions</a>, Bull. Austral Math. Soc., 64 (2001), 321-329.
%H A288254 <a href="/index/Rec#order_57">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1, -1, 1, -1, 0, 0, 0, 0, -1, 1, 0, 0, -1, 1, -1, 1, 0, 0, 1, -1, 1, -1, 2, -2, 0, 0, 0, 0, 0, 0, -2, 2, -1, 1, -1, 1, 0, 0, 1, -1, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, -1, 1, -1, 1, 1, -1).
%F A288254 G.f.: x^8/((1-x)*(1-x^2)* ... *(1-x^8)) - x^14/(1-x) * 1/((1-x^2)*(1-x^4)* ... *(1-x^14)).
%F A288254 a(2*n+14) = A026814(2*n+14) - A288342(n), a(2*n+15) = A026814(2*n+15) - A288342(n) for n >= 0. - _Seiichi Manyama_, Jun 08 2017
%Y A288254 Number of k-gons that can be formed with perimeter n: A005044 (k=3), A062890 (k=4), A069906 (k=5), A069907 (k=6), A288253 (k=7), this sequence (k=8), A288255 (k=9), A288256 (k=10).
%K A288254 nonn,easy
%O A288254 8,3
%A A288254 _Seiichi Manyama_, Jun 07 2017