This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288254 #20 Jun 08 2017 10:42:23 %S A288254 1,1,2,3,5,7,10,14,20,27,36,48,63,82,104,134,167,211,258,322,389,480, %T A288254 572,698,825,996,1165,1395,1620,1923,2216,2611,2991,3500,3984,4633, %U A288254 5248,6066,6836,7860,8820,10089,11273,12835,14288,16197 %N A288254 Number of octagons that can be formed with perimeter n. %C A288254 Number of (a1, a2, ... , a8) where 1 <= a1 <= ... <= a8 and a1 + a2 + ... + a7 > a8. %H A288254 Seiichi Manyama, <a href="/A288254/b288254.txt">Table of n, a(n) for n = 8..10000</a> %H A288254 G. E. Andrews, P. Paule and A. Riese, <a href="http://www.risc.jku.at/publications/download/risc_163/PAIX.pdf">MacMahon's Partition Analysis IX: k-gon partitions</a>, Bull. Austral Math. Soc., 64 (2001), 321-329. %H A288254 <a href="/index/Rec#order_57">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1, -1, 1, -1, 0, 0, 0, 0, -1, 1, 0, 0, -1, 1, -1, 1, 0, 0, 1, -1, 1, -1, 2, -2, 0, 0, 0, 0, 0, 0, -2, 2, -1, 1, -1, 1, 0, 0, 1, -1, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, -1, 1, -1, 1, 1, -1). %F A288254 G.f.: x^8/((1-x)*(1-x^2)* ... *(1-x^8)) - x^14/(1-x) * 1/((1-x^2)*(1-x^4)* ... *(1-x^14)). %F A288254 a(2*n+14) = A026814(2*n+14) - A288342(n), a(2*n+15) = A026814(2*n+15) - A288342(n) for n >= 0. - _Seiichi Manyama_, Jun 08 2017 %Y A288254 Number of k-gons that can be formed with perimeter n: A005044 (k=3), A062890 (k=4), A069906 (k=5), A069907 (k=6), A288253 (k=7), this sequence (k=8), A288255 (k=9), A288256 (k=10). %K A288254 nonn,easy %O A288254 8,3 %A A288254 _Seiichi Manyama_, Jun 07 2017