cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288255 Number of nonagons that can be formed with perimeter n.

This page as a plain text file.
%I A288255 #18 Jun 08 2017 10:43:43
%S A288255 1,1,2,3,5,7,11,14,21,28,39,50,69,87,116,145,189,233,299,363,458,553,
%T A288255 687,820,1009,1195,1453,1709,2058,2404,2872,3331,3948,4557,5361,6152,
%U A288255 7194,8215,9547,10853,12543,14199,16329,18407,21067,23666,26964,30179,34248,38207
%N A288255 Number of nonagons that can be formed with perimeter n.
%C A288255 Number of (a1, a2, ... , a9) where 1 <= a1 <= ... <= a9 and a1 + a2 + ... + a8 > a9.
%H A288255 Seiichi Manyama, <a href="/A288255/b288255.txt">Table of n, a(n) for n = 9..10000</a>
%H A288255 G. E. Andrews, P. Paule and A. Riese, <a href="http://www.risc.jku.at/publications/download/risc_163/PAIX.pdf">MacMahon's Partition Analysis IX: k-gon partitions</a>, Bull. Austral Math. Soc., 64 (2001), 321-329.
%H A288255 <a href="/index/Rec#order_81">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 0, 1, 0, 0, 0, 0, 1, -1, -1, 0, -1, -1, 0, 0, 0, -1, 1, 0, 0, 1, 1, 2, 0, 1, 1, 0, 0, 1, -1, -1, -2, -1, -1, -2, 0, -1, -1, -1, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, -1, 0, 0, -1, -1, 0, -2, -1, -1, 0, 0, -1, 1, 0, 0, 0, 1, 1, 0, 1, 1, -1, 0, 0, 0, 0, -1, 0, -1, 0, 1).
%F A288255 G.f.: x^9/((1-x)*(1-x^2)* ... *(1-x^9)) - x^16/(1-x) * 1/((1-x^2)*(1-x^4)* ... *(1-x^16)).
%F A288255 a(2*n+16) = A026815(2*n+16) - A288343(n), a(2*n+17) = A026815(2*n+17) - A288343(n) for n >= 0. - _Seiichi Manyama_, Jun 08 2017
%Y A288255 Number of k-gons that can be formed with perimeter n: A005044 (k=3), A062890 (k=4), A069906 (k=5), A069907 (k=6), A288253 (k=7), A288254 (k=8), this sequence (k=9), A288256 (k=10).
%K A288255 nonn,easy
%O A288255 9,3
%A A288255 _Seiichi Manyama_, Jun 07 2017