cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288256 Number of decagons that can be formed with perimeter n.

This page as a plain text file.
%I A288256 #19 Jun 09 2017 03:27:20
%S A288256 1,1,2,3,5,7,11,15,21,29,40,53,71,93,121,157,200,255,321,404,500,623,
%T A288256 762,939,1137,1388,1664,2015,2396,2877,3398,4050,4748,5623,6553,7711,
%U A288256 8936,10454,12051,14024,16088,18626,21275,24516,27882,31991,36244,41411,46746
%N A288256 Number of decagons that can be formed with perimeter n.
%C A288256 Number of (a1, a2, ... , a10) where 1 <= a1 <= ... <= a10 and a1 + a2 + ... + a9 > a10.
%H A288256 Seiichi Manyama, <a href="/A288256/b288256.txt">Table of n, a(n) for n = 10..10000</a>
%H A288256 G. E. Andrews, P. Paule and A. Riese, <a href="http://www.risc.jku.at/publications/download/risc_163/PAIX.pdf">MacMahon's Partition Analysis IX: k-gon partitions</a>, Bull. Austral Math. Soc., 64 (2001), 321-329.
%H A288256 <a href="/index/Rec#order_95">Index entries for linear recurrences with constant coefficients</a>, signature (0, 1, 0, 1, 1, 0, -1, 0, -1, -1, 0, 0, 0, -1, 1, 0, 0, 0, 1, -1, 0, 0, 0, 2, 1, 1, 0, 1, -2, 1, -1, 0, -1, -1, -1, -1, 0, -1, 1, -2, 1, -1, 1, -1, 2, 1, 1, 1, 1, 2, -1, 1, -1, 1, -2, 1, -1, 0, -1, -1, -1, -1, 0, -1, 1, -2, 1, 0, 1, 1, 2, 0, 0, 0, -1, 1, 0, 0, 0, 1, -1, 0, 0, 0, -1, -1, 0, -1, 0, 1, 1, 0, 1, 0, -1).
%F A288256 G.f.: x^10/((1-x)*(1-x^2)* ... *(1-x^10)) - x^18/(1-x) * 1/((1-x^2)*(1-x^4)* ... *(1-x^18)).
%F A288256 a(2*n+18) = A026816(2*n+18) - A288344(n), a(2*n+19) = A026816(2*n+19) - A288344(n) for n >= 0.
%Y A288256 Number of k-gons that can be formed with perimeter n: A005044 (k=3), A062890 (k=4), A069906 (k=5), A069907 (k=6), A288253 (k=7), A288254 (k=8), A288255 (k=9), this sequence (k=10).
%K A288256 nonn,easy
%O A288256 10,3
%A A288256 _Seiichi Manyama_, Jun 07 2017