This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288264 #16 Oct 17 2018 05:23:27 %S A288264 10369994005800,1461629029629340,99727841192820016, %T A288264 4470547991985864322,149789855223187292608,4031165546220945277040, %U A288264 91230456810047671200128,1792206112041706943912462,31276917257222840819283888,493477269339182312960416344,7136207296287499744197970400,95626920613336304647976494116 %N A288264 a(n) is the number of rooted maps with n edges and 10 faces on an orientable surface of genus 3. %H A288264 Gheorghe Coserea, <a href="/A288264/a288264.txt">The g.f. as a rational function of y=A000108(x)</a> %H A288264 Sean R. Carrell, Guillaume Chapuy, <a href="http://arxiv.org/abs/1402.6300">Simple recurrence formulas to count maps on orientable surfaces</a>, arXiv:1402.6300 [math.CO], 2014. %t A288264 Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0; %t A288264 Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2n - 1)/3 Q[n - 1, f, g] + (2n - 1)/3 Q[n - 1, f - 1, g] + (2n - 3) (2n - 2) (2n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2k - 1) (2l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]); %t A288264 a[n_] := Q[n, 10, 3]; %t A288264 Table[a[n], {n, 15, 26}] (* _Jean-François Alcover_, Oct 17 2018 *) %Y A288264 Rooted maps of genus 3 with n edges and f faces for 1<=f<=10: A288075 f=1, A288076 f=2, A288077 f=3, A288078 f=4, A288079 f=5, A288080 f=6, A288081 f=7, A288262 f=8, A288263 f=9, this sequence. %Y A288264 Column 10 of A269923. %Y A288264 Cf. A000108. %K A288264 nonn %O A288264 15,1 %A A288264 _Gheorghe Coserea_, Jun 07 2017