This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288265 #18 Aug 15 2017 10:53:51 %S A288265 1,1,3,1,16,15,6,1,125,222,205,120,45,10,1296,3660,5700,6165,4935, %T A288265 2937,1125,195,16807,68295,156555,258125,330456,334530,254275,131985, %U A288265 40950,5712,262144,1436568,4483360,10230360,18528216,27261192,31761744,27958920,17666320,7513632,1922760,223440,4782969,33779340,136368414,405918324,970196283,1910996136,3058785990,3866563764,3754432899,2724326136,1425385584,507370500,109907280,10929600 %N A288265 Triangle read by rows: T(n,k) is the number of labeled connected planar graphs on n vertices and k edges. %C A288265 Row n >= 3 contains 3*n-5 terms. %H A288265 Gheorghe Coserea, <a href="/A288265/b288265.txt">Rows n = 1..126, flattened</a> %H A288265 E. A. Bender, Z. Gao and N. C. Wormald, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v9i1r43">The number of labeled 2-connected planar graphs</a>, Electron. J. Combin., 9 (2002), #R43. %H A288265 M. Bodirsky, C. Groepl and M. Kang, <a href="http://dx.doi.org/10.1016/j.tcs.2007.02.045">Generating Labeled Planar Graphs Uniformly At Random</a>, Theoretical Computer Science, Volume 379, Issue 3, 15 June 2007, Pages 377-386. %H A288265 Omer Gimenez, Marc Noy, <a href="http://dx.doi.org/10.1090/S0894-0347-08-00624-3">Asymptotic enumeration and limit laws of planar graphs</a>, J. Amer. Math. Soc. 22 (2009), 309-329. %F A288265 A096332(n) = Sum_{k=n-1..3*n-6} T(n,k) for n >= 3. %F A288265 A000272(n) = T(n,n-1), A007816(n-3) = T(n, 3*n-6). %e A288265 A(x;t) = x + t*x^2/2! + (3*t^2 + t^3)*x^3/3! + (16*t^3 + 15*t^4 + 6*t^5 + t^6)*x^4/4! + ... %e A288265 Triangle starts: %e A288265 n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] %e A288265 [1] 1; %e A288265 [2] 0 1; %e A288265 [3] 0, 0, 3, 1; %e A288265 [4] 0, 0, 0, 16, 15, 6, 1; %e A288265 [5] 0, 0, 0, 0, 125, 222, 205, 120, 45, 10; %e A288265 [6] 0, 0, 0, 0, 0, 1296, 3660, 5700, 6165, 4935, 2937, 1125, 195; %e A288265 [7] ... %o A288265 (PARI) %o A288265 Q(n,k) = { \\ c-nets with n-edges, k-vertices %o A288265 if (k < 2+(n+2)\3 || k > 2*n\3, return(0)); %o A288265 sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2* %o A288265 (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) - %o A288265 4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1)))); %o A288265 }; %o A288265 A100960_ser(N) = { %o A288265 my(x='x+O('x^(3*N+1)), t='t+O('t^(N+4)), %o A288265 q=t*x*Ser(vector(3*N+1, n, Polrev(vector(min(N+3, 2*n\3), k, Q(n,k)),'t))), %o A288265 d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1), %o A288265 g2=intformal(t^2/2*((1+d)/(1+x)-1))); %o A288265 serlaplace(Ser(vector(N, n, subst(polcoeff(g2, n,'t),'x,'t)))*'x); %o A288265 }; %o A288265 A288265_ser(N) = { %o A288265 my(x='x+O('x^(N+3)), b = t*x^2/2 + serconvol(A100960_ser(N), exp(x)), %o A288265 g1=intformal(serreverse(x/exp(b'))/x)); serlaplace(g1); %o A288265 }; %o A288265 A288265_seq(N) = { %o A288265 my(v=Vec(A288265_ser(N))); vector(#v, n, Vecrev(v[n]/t^(n-1))); %o A288265 }; %o A288265 concat(A288265_seq(9)) %Y A288265 Cf. A000272, A007816, A096332, A100960, A266390, A267411, A288266, A290326. %K A288265 nonn,tabf %O A288265 1,3 %A A288265 _Gheorghe Coserea_, Aug 14 2017