This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288318 #22 Oct 18 2018 15:44:38 %S A288318 1,0,1,0,0,1,0,2,0,1,0,0,0,0,1,0,4,3,0,0,1,0,6,6,0,0,0,1,0,8,0,4,0,0, %T A288318 0,1,0,24,9,20,0,0,0,0,1,0,52,54,20,5,0,0,0,0,1,0,96,138,0,45,0,0,0,0, %U A288318 0,1,0,212,207,16,105,6,0,0,0,0,0,1,0,504,360,200,70,84,0,0,0,0,0,0,1 %N A288318 Number T(n,k) of Dyck paths of semilength n such that each positive level has exactly k peaks; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A288318 T(n,k) is defined for all n,k >= 0. The triangle contains only the terms for k<=n. T(0,k) = 1 and T(n,k) = 0 if k > n > 0. %H A288318 Alois P. Heinz, <a href="/A288318/b288318.txt">Rows n = 0..140, flattened</a> %H A288318 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %F A288318 T(n,n) = 1. %F A288318 T(n+1,n) = 0. %F A288318 T(2*n+1,n) = (n+1) for n>0. %F A288318 T(2*n+2,n) = A005564(n+1) for n>1. %F A288318 T(3*n,n) = A000984(n) = binomial(2*n,n). %F A288318 T(3*n+1,n) = 0. %F A288318 T(3*n+2,n) = (n+1)^2 for n>0. %e A288318 . T(5,1) = 4: %e A288318 . /\ /\ /\ /\ %e A288318 . /\/ \ / \/\ /\/ \ / \/\ %e A288318 . /\/ \ /\/ \ / \/\ / \/\ . %e A288318 . %e A288318 . T(5,2) = 3: %e A288318 . /\/\ /\/\ /\/\ %e A288318 . /\/\/ \ /\/ \/\ / \/\/\ . %e A288318 . %e A288318 Triangle T(n,k) begins: %e A288318 1; %e A288318 0, 1; %e A288318 0, 0, 1; %e A288318 0, 2, 0, 1; %e A288318 0, 0, 0, 0, 1; %e A288318 0, 4, 3, 0, 0, 1; %e A288318 0, 6, 6, 0, 0, 0, 1; %e A288318 0, 8, 0, 4, 0, 0, 0, 1; %e A288318 0, 24, 9, 20, 0, 0, 0, 0, 1; %e A288318 0, 52, 54, 20, 5, 0, 0, 0, 0, 1; %p A288318 b:= proc(n, k, j) option remember; %p A288318 `if`(n=j, 1, add(b(n-j, k, i)*(binomial(i, k) %p A288318 *binomial(j-1, i-1-k)), i=1..min(j+k, n-j))) %p A288318 end: %p A288318 T:= (n, k)-> `if`(n=0, 1, b(n, k$2)): %p A288318 seq(seq(T(n, k), k=0..n), n=0..14); %t A288318 b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]]; %t A288318 T[n_, k_] := If[n == 0, 1, b[n, k, k]]; %t A288318 Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, May 25 2018, translated from Maple *) %Y A288318 Columns k=0-10 give: A000007, A287846, A287845, A288319, A288320, A288321, A288322, A288323, A288324, A288325, A288326. %Y A288318 Row sums give A287987. %Y A288318 Cf. A000108, A000984, A005564, A288108, A288940. %K A288318 nonn,tabl %O A288318 0,8 %A A288318 _Alois P. Heinz_, Jun 07 2017