This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288319 #9 Jun 02 2018 10:36:52 %S A288319 1,0,0,1,0,0,0,4,20,20,0,16,200,1120,3540,6864,9400,18240,82000, %T A288319 364256,1255040,3448400,8094400,18653984,50789120,166596240,565558400, %U A288319 1791310496,5202559520,14279014880,39040502400,111437733184,335085082880,1032287357600 %N A288319 Number of Dyck paths of semilength n such that each positive level has exactly three peaks. %H A288319 Alois P. Heinz, <a href="/A288319/b288319.txt">Table of n, a(n) for n = 0..1000</a> %H A288319 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %e A288319 . a(7) = 4: %e A288319 . /\/\/\ /\/\/\ /\/\/\ /\/\/\ %e A288319 . /\/\/\/ \ /\/\/ \/\ /\/ \/\/\ / \/\/\/\ . %p A288319 b:= proc(n, k, j) option remember; %p A288319 `if`(n=j, 1, add(b(n-j, k, i)*(binomial(i, k) %p A288319 *binomial(j-1, i-1-k)), i=1..min(j+k, n-j))) %p A288319 end: %p A288319 a:= n-> `if`(n=0, 1, b(n, 3$2)): %p A288319 seq(a(n), n=0..35); %t A288319 b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i,1, Min[j + k, n - j]}]]; %t A288319 a[n_] := If[n == 0, 1, b[n, 3, 3]]; %t A288319 Table[a[n], {n, 0, 35}] (* _Jean-François Alcover_, Jun 02 2018, from Maple *) %Y A288319 Column k=3 of A288318. %Y A288319 Cf. A000108. %K A288319 nonn %O A288319 0,8 %A A288319 _Alois P. Heinz_, Jun 07 2017