This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288324 #8 Jun 02 2018 10:37:26 %S A288324 1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,9,315,3465,17325,45045,63063,45045, %T A288324 12870,0,81,6075,200340,3835755,48617415,440531784,3000152925, %U A288324 15896972520,67174514550,230430986514,649879542063,1519950287430,2963421671535,4828750295985 %N A288324 Number of Dyck paths of semilength n such that each positive level has exactly eight peaks. %H A288324 Alois P. Heinz, <a href="/A288324/b288324.txt">Table of n, a(n) for n = 0..1000</a> %H A288324 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %p A288324 b:= proc(n, k, j) option remember; %p A288324 `if`(n=j, 1, add(b(n-j, k, i)*(binomial(i, k) %p A288324 *binomial(j-1, i-1-k)), i=1..min(j+k, n-j))) %p A288324 end: %p A288324 a:= n-> `if`(n=0, 1, b(n, 8$2)): %p A288324 seq(a(n), n=0..40); %t A288324 b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]]; %t A288324 a[n_] := If[n == 0, 1, b[n, 8, 8]]; %t A288324 Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Jun 02 2018, from Maple *) %Y A288324 Column k=8 of A288318. %Y A288324 Cf. A000108. %K A288324 nonn %O A288324 0,18 %A A288324 _Alois P. Heinz_, Jun 07 2017