cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288342 Expansion of 1 / ((1-x)^2*(1-x^2)*(1-x^3)*...*(1-x^7)).

This page as a plain text file.
%I A288342 #22 Oct 02 2023 14:24:18
%S A288342 1,2,4,7,12,19,30,45,66,94,132,181,246,328,433,564,728,929,1177,1477,
%T A288342 1841,2277,2799,3417,4150,5010,6019,7194,8561,10140,11964,14057,16457,
%U A288342 19195,22315,25854,29865,34391,39493,45224,51654,58844,66877,75823,85776,96820
%N A288342 Expansion of 1 / ((1-x)^2*(1-x^2)*(1-x^3)*...*(1-x^7)).
%C A288342 Number of partitions of at most n into at most 7 parts.
%H A288342 Seiichi Manyama, <a href="/A288342/b288342.txt">Table of n, a(n) for n = 0..10000</a>
%H A288342 Richard J. Mathar, <a href="/A293482/a293482.pdf">Size of the Set of Residues of Integer Powers of Fixed Exponent</a>, research paper, 2017.
%H A288342 <a href="/index/Rec#order_29">Index entries for linear recurrences with constant coefficients</a>, signature (2, 0, -1, 0, -1, 1, -1, 0, 1, 1, 0, 1, -2, 0, 0, -2, 1, 0, 1, 1, 0, -1, 1, -1, 0, -1, 0, 2, -1).
%o A288342 (PARI) x='x+O('x^99); Vec(1/((1-x)*prod(i=1, 7, (1-x^i)))) \\ _Altug Alkan_, Mar 28 2018
%Y A288342 Number of partitions of at most n into at most k parts: A002621 (k=4), A002622 (k=5), A288341 (k=6), this sequence (k=7), A288343 (k=8), A288344 (k=9), A288345 (k=10).
%Y A288342 Cf. A288254.
%K A288342 nonn,easy
%O A288342 0,2
%A A288342 _Seiichi Manyama_, Jun 08 2017