This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288385 #24 Mar 02 2022 11:54:21 %S A288385 1,-1,-3,-1,0,10,8,12,1,-28,-29,-67,-51,-28,79,163,256,343,273,136, %T A288385 -351,-649,-1446,-1751,-1889,-1453,-124,1924,5138,7608,10636,10903, %U A288385 10054,3143,-5799,-20521,-37217,-53057,-65661,-66086,-54430,-15648,37179,122732 %N A288385 Expansion of Product_{k>=1} (1 - x^k)^sigma(k). %H A288385 Seiichi Manyama, <a href="/A288385/b288385.txt">Table of n, a(n) for n = 0..1000</a> %F A288385 Convolution inverse of A061256. %F A288385 a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A001001(k)*a(n-k) for n > 0. %F A288385 G.f.: exp(-Sum_{k>=1} sigma_2(k)*x^k/(k*(1 - x^k))). - _Ilya Gutkovskiy_, Oct 29 2018 %p A288385 with(numtheory): %p A288385 b:= proc(n) option remember; `if`(n=0, 1, add(add( %p A288385 d*sigma(d), d=divisors(j))*b(n-j), j=1..n)/n) %p A288385 end: %p A288385 a:= proc(n) option remember; `if`(n=0, 1, %p A288385 -add(b(n-i)*a(i), i=0..n-1)) %p A288385 end: %p A288385 seq(a(n), n=0..45); # _Alois P. Heinz_, Jun 08 2017 %t A288385 b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*DivisorSigma[1, d], {d, %t A288385 Divisors[j]}]*b[n - j], {j, 1, n}]/n]; %t A288385 a[n_] := a[n] = If[n == 0, 1, -Sum[b[n - i]*a[i], {i, 0, n - 1}]]; %t A288385 Table[a[n], {n, 0, 45}] (* _Jean-François Alcover_, Mar 02 2022, after _Alois P. Heinz_ *) %Y A288385 Cf. A001001, A061256. %Y A288385 Product_{k>=1} (1 - x^k)^sigma_m(k): A288098 (m=0), this sequence (m=1), A288389 (m=2), A288392 (m=3). %K A288385 sign %O A288385 0,3 %A A288385 _Seiichi Manyama_, Jun 08 2017