This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288392 #21 Sep 08 2022 08:46:19 %S A288392 1,-1,-9,-19,-9,163,573,1127,109,-7198,-27159,-58611,-50378,157532, %T A288392 892986,2431694,4040909,1605559,-16109148,-68261139,-167737209, %U A288392 -263590908,-109589779,934422499,3976197701,9922490735,16765911071,13022553978,-33008232762 %N A288392 Expansion of Product_{k>=1} (1 - x^k)^(sigma_3(k)). %H A288392 Seiichi Manyama, <a href="/A288392/b288392.txt">Table of n, a(n) for n = 0..1000</a> %F A288392 Convolution inverse of A288391. %F A288392 a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A027848(k)*a(n-k) for n > 0. %F A288392 G.f.: exp(-Sum_{k>=1} sigma_4(k)*x^k/(k*(1 - x^k))). - _Ilya Gutkovskiy_, Oct 29 2018 %p A288392 with(numtheory): %p A288392 b:= proc(n) option remember; `if`(n=0, 1, add(add( %p A288392 d*sigma[3](d), d=divisors(j))*b(n-j), j=1..n)/n) %p A288392 end: %p A288392 a:= proc(n) option remember; `if`(n=0, 1, %p A288392 -add(b(n-i)*a(i), i=0..n-1)) %p A288392 end: %p A288392 seq(a(n), n=0..30); # _Alois P. Heinz_, Jun 08 2017 %t A288392 nmax = 30; CoefficientList[Series[Product[(1-x^k)^DivisorSigma[3, k], {k, 1, nmax}], {x, 0, nmax}], x] (* _G. C. Greubel_, Oct 30 2018 *) %o A288392 (PARI) m=30; x='x+O('x^m); Vec(prod(k=1, m, (1-x^k)^sigma(k,3))) \\ _G. C. Greubel_, Oct 30 2018 %o A288392 (Magma) m:=30; R<q>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1-q^k)^DivisorSigma(3,k): k in [1..m]]) )); // _G. C. Greubel_, Oct 30 2018 %Y A288392 Cf. A027848, A288391. %Y A288392 Product_{k>=1} (1 - x^k)^sigma_m(k): A288098 (m=0), A288385 (m=1), A288389 (m=2), this sequence (m=3). %K A288392 sign %O A288392 0,3 %A A288392 _Seiichi Manyama_, Jun 08 2017