cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288420 a(n) = Sum_{d|n} d^4*A000593(n/d).

This page as a plain text file.
%I A288420 #24 Nov 14 2022 01:38:26
%S A288420 1,17,85,273,631,1445,2409,4369,6898,10727,14653,23205,28575,40953,
%T A288420 53635,69905,83539,117266,130341,172263,204765,249101,279865,371365,
%U A288420 394406,485775,558778,657657,707311,911795,923553,1118481,1245505,1420163,1520079,1883154
%N A288420 a(n) = Sum_{d|n} d^4*A000593(n/d).
%C A288420 Multiplicative because this sequence is the Dirichlet convolution of A000583 and A000593 which are both multiplicative. - _Andrew Howroyd_, Jul 20 2018
%H A288420 Seiichi Manyama, <a href="/A288420/b288420.txt">Table of n, a(n) for n = 1..10000</a>
%F A288420 From _Amiram Eldar_, Nov 13 2022: (Start)
%F A288420 a(n) = A027848(n) for odd n.
%F A288420 Multiplicative with a(2^e) = (16^(e+1)-1)/15 and a(p^e) = (p^(4*e+7) - (p^3+p^2+p+1)*p^(e+1) + p^2 + p + 1)/(p^7 - (p^3+p^2+p+1)*p + p^2 + p + 1) for p > 2.
%F A288420 Sum_{k=1..n} a(k) ~ c * n^5, where c = Pi^4*zeta(5)/480 = (3/16)*zeta(4)*zeta(5) = 0.210429... . (End)
%t A288420 f[p_, e_] :=  (p^(4*e+7) - (p^3+p^2+p+1)*p^(e+1) + p^2 + p + 1)/(p^7 - (p^3+p^2+p+1)*p + p^2 + p + 1); f[2, e_] := (16^(e+1)-1)/15; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* _Amiram Eldar_, Nov 13 2022 *)
%Y A288420 Cf. A000583, A013662, A013663, A027848, A288415.
%Y A288420 Sum_{d|n} d^k*A000593(n/d): A288417 (k=0), A109386 (k=1), A288418 (k=2), A288419 (k=3), this sequence (k=4).
%K A288420 mult,nonn
%O A288420 1,2
%A A288420 _Seiichi Manyama_, Jun 09 2017
%E A288420 Keyword:mult added by _Andrew Howroyd_, Jul 23 2018