A288452 Pseudoperfect totient numbers: numbers n such that equal the sum of a subset of their iterated phi(n).
3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 59, 61, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 97, 101, 103, 107, 109, 111, 113, 115, 119, 121, 123, 125, 127, 131, 137, 139, 141, 143, 149, 151, 153, 155
Offset: 1
Keywords
Examples
The iterated phi of 25 are 20, 8, 4, 2, 1 and 25 = 20 + 4 + 1.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
pseudoPerfectTotQ[n_]:= Module[{tots = Most[Rest[FixedPointList[EulerPhi@# &, n]]]}, MemberQ[Total /@ Subsets[tots, Length[tots]], n]]; Select[Range[155], pseudoPerfectTotQ]
-
PARI
subsetSum(v, target)=if(setsearch(v,target), return(1)); if(#v<2, return(target==0)); my(u=v[1..#v-1]); if(target>v[#v] && subsetSum(u, target-v[#v]), return(1)); subsetSum(u,target); is(n)=if(isprime(n), return(n>2)); my(v=List(),k=n); while(k>1, listput(v,k=eulerphi(k))); subsetSum(Set(v),n) \\ Charles R Greathouse IV, Jun 25 2017
Comments