A288457 Chebyshev coefficients of density of states of diamond lattice.
1, -8, -32, 1024, -12800, 90112, -131072, -2097152, -78774272, 3080716288, -49736056832, 407753457664, -222801428480, -19645180411904, -494299196162048, 22797274090307584, -393216908922454016, 3294704322255781888, 1334801068806111232, -228652837223366918144, -4282607861714030428160, 222230748909257887842304
Offset: 0
Keywords
Links
- Yen Lee Loh, A general method for calculating lattice Green functions on the branch cut, arXiv:1706.03083 [math-ph], 2017.
Crossrefs
Programs
-
Mathematica
Wdia[n_] := If[OddQ[n], 0, Sum[Binomial[n/2,j]^2 Binomial[2j,j] Binomial[n-2j, n/2-j], {j, 0, n/2}]]; ank[n_, k_] := SeriesCoefficient[ChebyshevT[n, x], {x, 0, k}]; zng[n_] := Sum[ank[n, k]*4^(n-k)*Wdia[k], {k, 0, n}]; Table[zng[n], {n,0,50}]
Comments