A288460 Chebyshev coefficients of density of states of triangular lattice.
1, 0, -24, 48, 288, -2880, 3072, 64512, -400896, -245760, 12496896, -50688000, -159547392, 2133540864, -4964253696, -42047373312, 313193005056, -179042254848, -8158768005120, 36487616790528, 65397155954688, -1204277276049408, 2427936640598016, 19127143199932416, -107713462133587968, -223101299070074880
Offset: 0
Keywords
Links
- Yen Lee Loh, A general method for calculating lattice Green functions on the branch cut, arXiv:1706.03083 [math-ph], 2017.
Crossrefs
Programs
-
Mathematica
Whon[n_] := If[OddQ[n], 0, Sum[Binomial[n/2,j]^2 Binomial[2j,j], {j, 0, n/2}]]; Wtri[n_] := Sum[Binomial[n,j] (-3)^(n-j) Whon[2j], {j, 0, n}]; ank[n_, k_] := SeriesCoefficient[ChebyshevT[n, x], {x, 0, k}]; zng[n_] := Sum[ank[n, k]*6^(n - k)*Wtri[k], {k, 0, n}]; Table[zng[n], {n,0,50}]
Comments