cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288486 Square rings obtained by adding four identical cuboids from A169938, a(n) = 4*n*(n+1)*(n*(n+1)+1).

Original entry on oeis.org

0, 24, 168, 624, 1680, 3720, 7224, 12768, 21024, 32760, 48840, 70224, 97968, 133224, 177240, 231360, 297024, 375768, 469224, 579120, 707280, 855624, 1026168, 1221024, 1442400, 1692600, 1974024, 2289168, 2640624, 3031080, 3463320, 3940224, 4464768, 5040024
Offset: 0

Views

Author

Daniel Poveda Parrilla, Jun 10 2017

Keywords

Comments

If we fill the empty space with A288487(n) cubes, we get a solid cuboid with (n+1)^5 cubes (A000584(n+1)).

Crossrefs

Programs

  • Mathematica
    Table[4 n (n + 1) (n^2 + n + 1), {n, 0, 28}] (* or *) CoefficientList[Series[24 (x + 2 x^2 + x^3)/(1 - x)^5, {x, 0, 28}], x] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 24, 168, 624, 1680}, 29]
  • PARI
    Vec(24*(x + 2*x^2 + x^3)/(1 - x)^5 + O(x^28))

Formula

G.f.: 24*(x + 2*x^2 + x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A007204(n) - 1 = (A001844(n))^2 - 1.
a(n) = 4*A169938(n) = 4*A002378(n)*A002061(n+1) = A033996(n)*A002061(n+1).