A288488 Theta series of the 12-dimensional lattice of hyper-roots D_3(SU(3)).
1, 0, 36, 144, 486, 2880, 5724, 7776, 31068, 40320, 47628, 149184, 178452, 171072, 511776, 527904, 500094, 1309824, 1339308, 1143072, 3049992, 2840256, 2451384, 5942016, 5709636, 4510080, 11313720, 9849744, 8199792, 18929088, 17426664, 13211424, 31971132
Offset: 0
Keywords
Examples
G.f. = 1 + 36*x^2 + 144*x^3 + 486*x^4 + ... G.f. = 1 + 36*q^4 + 144*q^6 + 486*q^8 + ...
References
- P. Di Francesco and J.-B. Zuber, SU(N) lattice integrable models associated with graphs, Nucl. Phys., B 338, pp 602--646, (1990).
Links
- Andy Huchala, Table of n, a(n) for n = 0..20000
- R. Coquereaux, Theta functions for lattices of SU(3) hyper-roots, arXiv:1708.00560 [math.QA], 2017.
- A. Ocneanu, The Classification of subgroups of quantum SU(N), in "Quantum symmetries in theoretical physics and mathematics", Bariloche 2000, Eds. R. Coquereaux, A. Garcia. and R. Trinchero, AMS Contemporary Mathematics, 294, pp. 133-160, (2000). End of Sec 2.5.
Crossrefs
Programs
-
Magma
prec := 20; gram := [[6,0,0,0,2,2,-2,1,1,1,0,0],[0,6,0,0,2,2,1,-2,1,1,0,0],[0,0,6,0,2,2,1,1,-2,1,0,0],[0,0,0,6,2,2,1,1,1,-2,0,0],[2,2,2,2,6,4,2,2,2,2,1,4],[2,2,2,2,4,6,2,2,2,2,4,1],[-2,1,1,1,2,2,6,0,0,0,2,2],[1,-2,1,1,2,2,0,6,0,0,2,2],[1,1,-2,1,2,2,0,0,6,0,2,2],[1,1,1,-2,2,2,0,0,0,6,2,2],[0,0,0,0,1,4,2,2,2,2,6,0],[0,0,0,0,4,1,2,2,2,2,0,6]]; S := Matrix(gram); L := LatticeWithGram(S); T
:= ThetaSeries(L, 14); M := ThetaSeriesModularFormSpace(L); B := Basis(M,prec); Coefficients(&+[Coefficients(T)[2*i-1]*B[i] :i in [1..7]]); // Andy Huchala, May 14 2023
Extensions
More terms from Andy Huchala, May 14 2023
Comments